
Lecture #10

Texture Mapping
Computer Graphics

Winter Term 2020/21

Marc Stamminger / Roberto Grosso

• so far: detail through polygons & materials
• example: (large) brick wall

• many polygons & materials needed for bricks
→ inefficient for memory and processing

• alternative: Textures
introduced by Ed Catmull (1974)
extended by Jim Blinn (1976)

2

Texture Mapping

Computer Graphics 2020/21 - Texture Mapping

• Texture + Quad = Image

3

Texture Mapping

(0,0) (1,0)

(1,1) (0,1)

(0,0)

(1,0)

(1,1)

(0,1)

Computer Graphics 2020/21 - Texture Mapping

4

Texture Mapping

Foley, van Dam, Feiner, Hughes
Computer Graphics 2020/21 - Texture Mapping

5

Texture Mapping

Foley, van Dam, Feiner, Hughes
Computer Graphics 2020/21 - Texture Mapping

• What are textures or texture maps?
• Functions or images that change the appearance of an object, typically its color

→ Coarse geometry (i.e. fast rendering), fine texture (i.e. fine visual detail)
• Great performance gain compared to using huge triangle meshes with different

materials
• Can be 1D

→ heat map: maps the “temperature” of an object to color(cold=blue, warm=red)
• or 2D

→ images to mapped onto the object like wall paper
• or 3D

→ volumetric objects such as clouds
→ or solid objects such as wood

• for now, we only look at 2D textures

6

Texture Mapping

Computer Graphics 2020/21 - Texture Mapping

Texture Mapping

• Textures usually contain color, e.g. the diffuse component of the Phong
model

• But they can also contain specular color, ambient color or other material
parameters

• And even much more!

7Computer Graphics 2020/21 - Texture Mapping

8

Texture Mapping - Introduction

Computer Graphics 2020/21 - Texture Mapping

9

Texture Mapping - Introduction

Computer Graphics 2020/21 - Texture Mapping

10

Texture Mapping - Introduction

Computer Graphics 2020/21 - Texture Mapping

11

Texture Mapping - Introduction

Computer Graphics 2020/21 - Texture Mapping

12

Texture Mapping - Introduction

Computer Graphics 2020/21 - Texture Mapping

13

Texture Mapping - Introduction

Computer Graphics 2020/21 - Texture Mapping

• Mapping in 2D:
• Texture image of size (𝑛𝑛𝑥𝑥 ,𝑛𝑛𝑦𝑦)
• Constraints on some architectures (powers of 2)
• Texture coordinates “s” and “t” for accessing texture images

→ (𝑠𝑠, 𝑡𝑡, 𝑟𝑟) in 3D and
→ (𝑠𝑠, 𝑡𝑡, 𝑟𝑟, 𝑞𝑞) homogeneous texture coordinates

• Assign to every geometric point (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) on the polygon P a texture coordinate 𝑠𝑠, 𝑡𝑡 :

→ 𝐹𝐹:𝑃𝑃 ∈ ℝ3 → 0,1 2 ∈ ℝ2

• Simple procedure:
1. for every vertex assign (𝑠𝑠, 𝑡𝑡).
2. For interior points assign (𝑠𝑠, 𝑡𝑡) by interpolation.

14

Texture Mapping

Computer Graphics 2020/21 - Texture Mapping

• Texture + Quad = Image

15

Texture Mapping

(0,0) (1,0)

(1,1) (0,1)

(0,0)

(1,0)

(1,1)

(0,1)

Computer Graphics 2020/21 - Texture Mapping

• Texture coordinates → Parameterization

• Simple parameterization

• difficult parameterization

16

Parameterization

Computer Graphics 2020/21 - Texture Mapping

Parameterization

• Find a mapping from 3D surface
to 2D plane (or vice versa)

• Long standing problem
• solutions available in modeling

programs, often not robust
• → lecture „Geometry Processing“

Computer Graphics 2020/21 - Texture Mapping 17

ℝ3 ℝ2

𝑈𝑈(𝑥𝑥,𝑦𝑦, 𝑧𝑧)

Parameterization

• Texture Atlas:
not one single texture, but fragmented
textures for object parts

18Computer Graphics 2020/21 - Texture Mapping

• Interpolation Problem
• Standard interpolation method at rasterization stage (linear interpolation) results in

distorted images!
• Reason: Does not consider the distortion of the perspective transformation!

19

Texture Mapping for Rasterized Triangles

Interpolation using linear
interpolation on triangles

Perspectively correct interpolation
→ projective

Original texture

With triangulation

Computer Graphics 2020/21 - Texture Mapping

• Correct wrong

20

Texture Mapping for Rasterized Triangles

Computer Graphics 2020/21 - Texture Mapping

• Correct very wrong

21

Texture Mapping for Rasterized Triangles

Computer Graphics 2020/21 - Texture Mapping

• Perspective interpolation – problem statement
• Example: line segment not parallel to image plane:
• 𝑠𝑠: texture coordinate in world space, 𝑠𝑠𝑠: texture coordinate in screen space
• Linear interpolation of 𝑠𝑠𝑠 in screen space does not match interpolation of 𝑠𝑠 in worlds

coordinates.

22

Texture Mapping for Rasterized Triangles

𝑥𝑥

s′ = 1

𝑠𝑠𝑠 = 0

𝑠𝑠 = 0

𝑠𝑠 = 1

𝑠𝑠 = 0.5𝑠𝑠𝑠 ≠ 0.5 𝑧𝑧

image
plane

line
segment

Computer Graphics 2020/21 - Texture Mapping

• Perspective Interpolation
• Needed: Mapping 𝑠𝑠𝑠 → 𝑠𝑠 that implements perspective correct linear interpolation in

screen space
• Solution: consider the division by 𝑧𝑧!
• following derivation from

http://www.comp.nus.edu.sg/~lowkl/publications/lowk_persp_interp_techrep.pdf

23

Texture Mapping for Rasterized Triangles

Computer Graphics 2020/21 - Texture Mapping

http://www.comp.nus.edu.sg/%7Elowkl/publications/lowk_persp_interp_techrep.pdf

• 𝑠𝑠: relative position in world space, 𝑠𝑠𝑠 in image space
• In world space, we describe the line segment as:

𝑥𝑥
𝑧𝑧 =

𝑥𝑥1
𝑧𝑧1 + 𝑠𝑠

𝑥𝑥2 − 𝑥𝑥1
𝑧𝑧2 − 𝑧𝑧1

• in image space:

𝑥𝑥′ =
𝑥𝑥1
𝑧𝑧1

+ 𝑠𝑠′
𝑥𝑥2
𝑧𝑧2
−
𝑥𝑥1
𝑧𝑧1

• Obviously 𝑠𝑠𝑠 is not the same as 𝑠𝑠!

24

Texture Mapping for Rasterized Triangles

𝑥𝑥

𝑠𝑠𝑠 = 1

𝑠𝑠𝑠 = 0
𝑠𝑠 = 0

𝑠𝑠 = 1

𝑠𝑠 = 0.5𝑠𝑠𝑠 ≠ 0.5 z

𝑧𝑧 = 1 𝑥𝑥2
𝑧𝑧2

𝑥𝑥1
𝑧𝑧1

Computer Graphics 2020/21 - Texture Mapping

• During rasterization, we know 𝑠𝑠𝑠, and need to derive 𝑠𝑠 from 𝑠𝑠𝑠
• with some arithmetics, we find

𝑠𝑠 =
𝑠𝑠𝑠𝑧𝑧1

𝑠𝑠𝑠𝑧𝑧1 + 1 − 𝑠𝑠𝑠 𝑧𝑧2

25

Texture Mapping for Rasterized Triangles

𝑥𝑥

𝑠𝑠𝑠 = 1

𝑠𝑠𝑠 = 0
𝑠𝑠 = 0

𝑠𝑠 = 1

𝑠𝑠 = 0.5𝑠𝑠𝑠 ≠ 0.5 z

𝑧𝑧 = 1 𝑥𝑥2
𝑧𝑧2

𝑥𝑥1
𝑧𝑧1

Computer Graphics 2020/21 - Texture Mapping

• Example

• 𝑠𝑠𝑠 = 3
4
→ 𝑠𝑠 =

3
4𝑧𝑧1

3
4𝑧𝑧1+

1
4𝑧𝑧2

= 1
2

26

Texture Mapping for Rasterized Triangles

𝑥𝑥

𝑠𝑠𝑠 = 1

𝑠𝑠𝑠 = 0

𝑠𝑠 = 1, 𝑧𝑧 = 3/2

s=0.5
𝑠𝑠𝑠 = 3/4 𝑧𝑧

𝑠𝑠 = 0
𝑧𝑧 = 1/2

Computer Graphics 2020/21 - Texture Mapping

• for arbitrary attributes 𝐴𝐴 along a line:
• 𝑧𝑧-values 𝑧𝑧1 and 𝑧𝑧2
• attribute values 𝐴𝐴1 and 𝐴𝐴2

• 𝐴𝐴 𝑠𝑠 = 𝐴𝐴1 + 𝑠𝑠 𝐴𝐴2 − 𝐴𝐴1 = ⋯ =
𝐴𝐴1
𝑧𝑧1
+𝑠𝑠𝑠 𝐴𝐴2

𝑧𝑧2
−𝐴𝐴1𝑧𝑧1

1
𝑧𝑧1
+𝑠𝑠𝑠(1𝑧𝑧2

− 1
𝑧𝑧1

)

• Interpolate 𝐴𝐴/𝑧𝑧 and 1/𝑧𝑧
• divide to get interpolated 𝐴𝐴

27

Texture Mapping for Rasterized Triangles

𝑥𝑥

𝑠𝑠𝑠 = 1

𝑠𝑠𝑠 = 0

𝑠𝑠 = 0

𝑠𝑠 = 1

𝑠𝑠 = 0.5𝑠𝑠𝑠 ≠ 0.5 𝑧𝑧

𝑧𝑧 = 1
𝐴𝐴2

𝐴𝐴1

Computer Graphics 2020/21 - Texture Mapping

Texture Mapping for Rasterized Triangles

• From this, we can derive as approach for interpolating texture coordinates
• interpolate 𝑠𝑠/𝑧𝑧, 𝑡𝑡/𝑧𝑧, and 1/𝑧𝑧 during rasterization
• Per pixel: (𝑠𝑠/𝑧𝑧)/(1/𝑧𝑧), (𝑡𝑡/𝑧𝑧)/(1/𝑧𝑧) → (𝑠𝑠, 𝑡𝑡)

• Also works for arbitrary attributes

28

𝑠𝑠𝐴𝐴
𝑧𝑧𝐴𝐴

,
𝑡𝑡𝐴𝐴
𝑧𝑧𝐴𝐴

,
1
𝑧𝑧𝐴𝐴

𝑠𝑠𝐵𝐵
𝑧𝑧𝐵𝐵

,
𝑡𝑡𝐵𝐵
𝑧𝑧𝐵𝐵

,
1
𝑧𝑧𝐵𝐵

𝑠𝑠𝐶𝐶
𝑧𝑧𝐶𝐶

,
𝑡𝑡𝐶𝐶
𝑧𝑧𝐶𝐶

,
1
𝑧𝑧𝐶𝐶

𝑠𝑠
𝑧𝑧

,
𝑡𝑡
𝑧𝑧

,
1
𝑧𝑧

Computer Graphics 2020/21 - Texture Mapping

Texture Mapping

• In OpenGL / WebGL:
• 1D, 2D and 3D textures
• textures can have luminance only (grey value), luminance plus alpha, color, or color

plus alpha
• 8bit per channel, 16bit per channel, or float values
• are sampled in a shader using a sampler object
• homogeneous texture coordinates 𝑠𝑠, 𝑡𝑡, 𝑟𝑟, 𝑞𝑞
• newer OpenGL also supports compressed textures

Computer Graphics 2020/21 - Texture Mapping 29

Texture Mapping

• In WebGL

• pixel shader

Computer Graphics 2020/21 - Texture Mapping 30

if (!texHandle) {
var image = document.getElementById(„mytexture“);
texHandle = gl.createTexture();
gl.bindTexture(gl.TEXTURE_2D,texHandle);
gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA,

gl.UNSIGNED_BYTE, image);
} else

gl.bindTexture(gl.TEXTURE_2D,texHandle);

…
uniform sampler2D texture;
varying vec2 uv; // texture coordinate

void main(void) {
…
// finally, apply texture by multiplication
gl_FragColor *= texture2D(texture,uv);

}

Texture Mapping Demo

Computer Graphics 2020/21 - Texture Mapping 31

Procedural Texture Generation

• Textures can come from an image file, e.g. jpg
• or can be generated by a procedure

→ on the fly in a shader
• often based on fractal noise or turbulence functions (see later)

• → Texture synthesis: generate arbitrarily large high-quality texture from a
small input sample.

32Computer Graphics 2020/21 - Texture Mapping

Procedural Texture Generation

• regular stripes dark/bright
brown

• Stripe width/distance:
varies over years

• Shape of stripes slightly
unregular

• Less or more irregular
patterns possible

• Example:
https://www.shadertoy.com/view/ldscDM

Computer Graphics 2020/21 - Texture Mapping 33

freestocktextures.com

https://www.shadertoy.com/view/ldscDM

Procedural Texture Generation

• Procedural texture generation
• Computer generated texture image (1D, 2D or 3D)

created using an algorithm.
• Natural appearance requires some randomness,

but also structure
• All based on Noise Functions

34Computer Graphics 2020/21 - Texture Mapping

• Noise Functions:
• “White noise”: Assign random color for every point

→ no coherence
→ not helpful for procedural textures
→ coherency required

• Coherent Noise
• Method for generating coherent noise over space.
• Coherent means: the function values change smoothly.

• First Approach
• choose random values on a grid
• interpolate
• grid size corresponds to noise frequency

35

Procedural Texture Generation

Non coherent

Coherent

Images by Matt Zucker

Computer Graphics 2020/21 - Texture Mapping

• Better approach, proved very practical: Perlin Noise
• At grid points (𝑖𝑖, 𝑗𝑗, 𝑘𝑘) choose random gradient Γ𝑖𝑖𝑖𝑖𝑖𝑖, set values to zero
• Γ𝑖𝑖𝑖𝑖𝑖𝑖 is determined from (𝑖𝑖, 𝑗𝑗, 𝑘𝑘) using an array of precomputed random gradient

values 𝐺𝐺[] and a hash function 𝜙𝜙() as:
Γ𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐺𝐺 𝜙𝜙 i + 𝜙𝜙 𝑗𝑗 + 𝜙𝜙 𝑘𝑘

→ „pseudorandom“ gradient values, very fast to compute
• Then, these grid point gradients are interpolated

36

Procedural Texture Generation

Computer Graphics 2020/21 - Texture Mapping

Γ𝑖𝑖𝑖𝑖𝑖𝑖

Procedural Texture Generation

• Simple Perlin Noise is boring
• Gets interesting by adding noise of varying frequency:

37

Sum of all layers

Computer Graphics 2020/21 - Texture Mapping

• Turbulence
• Many natural textures

contain repeating features
of different sizes

• Perlin pseudo fractal
“turbulence” function

• Effectively adds scaled
copies of noise function on
top of itself

𝑛𝑛𝑡𝑡 𝑥𝑥 = �
𝑖𝑖

𝑛𝑛(2𝑖𝑖𝑥𝑥)
2𝑖𝑖

38

Procedural Texture Generation

Computer Graphics 2020/21 - Texture Mapping

• Procedural texture generation
• Computer generated texture image (1D,

2D or 3D) created using an algorithm.
• Natural appearance through fractal

noise, coherence and multi-scale
representations, e.g. turbulence
functions.

39

Procedural Texture Generation

Computer Graphics 2020/21 - Texture Mapping

• Procedural texture generation
• Computer generated texture image (1D,

2D or 3D) created using an algorithm.
• Natural appearance through fractal

noise, coherence and multi-scale
representations, e.g. turbulence
functions.

40

Procedural Texture Generation

Computer Graphics 2020/21 - Texture Mapping

• Perlin noise
• Solid texture
• Based on gradient noise

• Generate an n-dimensional lattice of random gradients
• The noise value is interpolated in the lattice cells, e.g. using linear or cosine interpolation.

• Gradient noise is conceptually different than value or wavelet noise.

41

Procedural Texture Generation

http://www.noisemachine.com/talk1/

Computer Graphics 2020/21 - Texture Mapping

http://www.noisemachine.com/talk1/

Texture Functions: Perlin noise

• other examples:

Computer Graphics 2020/21 - Texture Mapping 42

wood marble clouds

Images by Matt Zucker

Image by Ken Perlin

see also ShaderToy „Perlin Noise“, e.g.
https://www.shadertoy.com/view/Md3SzB
https://www.shadertoy.com/view/4tdSWr

https://www.shadertoy.com/view/Md3SzB
https://www.shadertoy.com/view/4tdSWr

Texture Functions

• wood shader

ht
tp

:/
/f

ly
co

ol
er

.c
om

/

be
rt

ra
m

gu
ita

rs
.c

om

Computer Graphics 2020/21 - Texture Mapping 43

Texture Mapping

• many other applications for textures

44Computer Graphics 2020/21 - Texture Mapping

• Non-Graphics Application: „Solarscreens“

Textures Beyond Wallpaper: Normal Maps

Computer Graphics 2020/21 - Texture Mapping 45

• Normal Map
• texture with 3D normals encoded in RGB
• 8 Bit per component sufficient

• but also 3x10 Bit, 4x16 Bit unsigned, floating point
• [-1,1] to [0;1]

• R = x/2 + 0.5, G = y/2 + 0.5, …
• x = 2R-1, …

Textures Beyond Wallpaper: Normal Maps

Computer Graphics 2020/21 - Texture Mapping 46

• from height fields
• local differences:

Textures Beyond Wallpaper: Normal Maps

















∆−−∆+
∆×

















∆−−∆+

∆
=

),(),(
2

0

),(),(
0

2
),(

yyxhyyxh
y

yxxhyxxh

x
yxN

Computer Graphics 2020/21 - Texture Mapping 47

Normal Maps

• Multiple
Textures

• Pixel
Shader

Computer Graphics 2020/21 - Texture Mapping 48

gl.activeTexture(gl.TEXTURE0);
gl.bindTexture(gl.TEXTURE_2D,color);

gl.activeTexture(gl.TEXTURE1);
gl.bindTexture(gl.TEXTURE_2D,normalmap);

…
uniform sampler2D color,normalmap;
varying vec2 uv; // texture coordinate

void main(void) {
…
vec3 c = texture2D(color,uv);
vec3 n = texture2D(normalmap,uv);
float diff = dot(n,light);
…
gl_FragColor = …

}

Texture Mapping Demo

Computer Graphics 2020/21 - Texture Mapping 49

Volumetric Texture Mapping

• e.g., slices from CT data form a volumetric texture

input data 3D representation

illumination

classification

Computer Graphics 2020/21 - Texture Mapping 50

Volumetric Texture Mapping

• How to render?
→ Polygonal slices with transparent textures

Christoph Rezk-Salama

Computer Graphics 2020/21 - Texture Mapping 51

Volumetric Texture Mapping

• Variant 1: Axis-aligned slices with 2D textures
→ 3 copies of the data required

Christoph Rezk-Salama

Computer Graphics 2020/21 - Texture Mapping 52

Volumetric Texture Mapping

• Better: store as 3D texture (supported by OpenGL etc.)
→ 3D texture coordinates required

• Render slices parallel to image plane back to front
→ only one copy in texture memory required

Christoph Rezk-Salama

Computer Graphics 2020/21 - Texture Mapping 53

slices parallel
to image plane

texturing
polygons

final
image

Trilinear
hardware

interpolation

Volumetric Texture Mapping

Christoph Rezk-Salama

𝜶𝜶-Blending

Computer Graphics 2020/21 - Texture Mapping 54

Next Lecture

• How to interpolate textures
• Texture Aliasing and Antialiasing

Computer Graphics 2020/21 - Texture Mapping 55

	Lecture #10��Texture Mapping
	Texture Mapping
	Texture Mapping
	Texture Mapping
	Texture Mapping
	Texture Mapping
	Texture Mapping
	Texture Mapping - Introduction
	Texture Mapping - Introduction
	Texture Mapping - Introduction
	Texture Mapping - Introduction
	Texture Mapping - Introduction
	Texture Mapping - Introduction
	Texture Mapping
	Texture Mapping
	Parameterization
	Parameterization
	Parameterization
	Texture Mapping for Rasterized Triangles
	Texture Mapping for Rasterized Triangles
	Texture Mapping for Rasterized Triangles
	Texture Mapping for Rasterized Triangles
	Texture Mapping for Rasterized Triangles
	Texture Mapping for Rasterized Triangles
	Texture Mapping for Rasterized Triangles
	Texture Mapping for Rasterized Triangles
	Texture Mapping for Rasterized Triangles
	Texture Mapping for Rasterized Triangles
	Texture Mapping
	Texture Mapping
	Texture Mapping Demo
	Procedural Texture Generation
	Procedural Texture Generation
	Procedural Texture Generation
	Procedural Texture Generation
	Procedural Texture Generation
	Procedural Texture Generation
	Procedural Texture Generation
	Procedural Texture Generation
	Procedural Texture Generation
	Procedural Texture Generation
	Texture Functions: Perlin noise
	Texture Functions
	Texture Mapping
	Textures Beyond Wallpaper: Normal Maps
	Textures Beyond Wallpaper: Normal Maps
	Textures Beyond Wallpaper: Normal Maps
	Normal Maps
	Texture Mapping Demo
	Volumetric Texture Mapping
	Volumetric Texture Mapping
	Volumetric Texture Mapping
	Volumetric Texture Mapping
	Volumetric Texture Mapping
	Next Lecture

