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• so far: detail through polygons & materials
• example: (large) brick wall

• many polygons & materials needed for bricks
→ inefficient for memory and processing

• alternative: Textures
introduced by Ed Catmull (1974)
extended by Jim Blinn (1976)
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• Texture                    +                          Quad               =                       Image
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• What are textures or texture maps?
• Functions or images that change the appearance of an object, typically its color

→ Coarse geometry (i.e. fast rendering), fine texture (i.e. fine visual detail)
• Great performance gain compared to using huge triangle meshes with different 

materials
• Can be 1D

→ heat map: maps the “temperature” of an object to color(cold=blue, warm=red)
• or 2D

→ images to mapped onto the object like wall paper
• or 3D

→ volumetric objects such as clouds
→ or solid objects such as wood

• for now, we only look at 2D textures
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Texture Mapping

• Textures usually contain color, e.g. the diffuse component of the Phong 
model

• But they can also contain specular color, ambient color or other material 
parameters

• And even much more!
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• Mapping in 2D:
• Texture image of size (𝑛𝑛𝑥𝑥 ,𝑛𝑛𝑦𝑦)
• Constraints on some architectures (powers of 2)
• Texture coordinates “s” and “t” for accessing texture images

→ (𝑠𝑠, 𝑡𝑡, 𝑟𝑟) in 3D and
→ (𝑠𝑠, 𝑡𝑡, 𝑟𝑟, 𝑞𝑞) homogeneous texture coordinates

• Assign to every geometric point (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) on the polygon P a texture coordinate 𝑠𝑠, 𝑡𝑡 :

→ 𝐹𝐹:𝑃𝑃 ∈ ℝ3 → 0,1 2 ∈ ℝ2

• Simple procedure: 
1. for every vertex assign (𝑠𝑠, 𝑡𝑡). 
2. For interior points assign (𝑠𝑠, 𝑡𝑡) by interpolation. 
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• Texture                    +                          Quad               =                       Image
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• Texture coordinates → Parameterization

• Simple parameterization

• difficult parameterization
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Parameterization

• Find a mapping from 3D surface
to 2D plane (or vice versa)

• Long standing problem
• solutions available in modeling

programs, often not robust
• → lecture „Geometry Processing“
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Parameterization

• Texture Atlas:
not one single texture, but fragmented
textures for object parts
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• Interpolation Problem
• Standard interpolation method at rasterization stage (linear interpolation) results in 

distorted images!
• Reason: Does not consider the distortion of the perspective transformation!
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Interpolation using linear
interpolation on triangles

Perspectively correct interpolation
→ projective

Original texture

With triangulation
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• Correct wrong
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• Correct very wrong
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• Perspective interpolation – problem statement
• Example: line segment not parallel to image plane:
• 𝑠𝑠: texture coordinate in world space, 𝑠𝑠𝑠: texture coordinate in screen space
• Linear interpolation of 𝑠𝑠𝑠 in screen space does not match interpolation of 𝑠𝑠 in worlds 

coordinates.
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• Perspective Interpolation
• Needed: Mapping 𝑠𝑠𝑠 → 𝑠𝑠 that implements perspective correct linear interpolation in 

screen space
• Solution: consider the division by 𝑧𝑧!
• following derivation from 

http://www.comp.nus.edu.sg/~lowkl/publications/lowk_persp_interp_techrep.pdf
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• 𝑠𝑠: relative position in world space, 𝑠𝑠𝑠 in image space
• In world space, we describe the line segment as:

𝑥𝑥
𝑧𝑧 =

𝑥𝑥1
𝑧𝑧1 + 𝑠𝑠

𝑥𝑥2 − 𝑥𝑥1
𝑧𝑧2 − 𝑧𝑧1

• in image space:

𝑥𝑥′ =
𝑥𝑥1
𝑧𝑧1

+ 𝑠𝑠′
𝑥𝑥2
𝑧𝑧2
−
𝑥𝑥1
𝑧𝑧1

• Obviously 𝑠𝑠𝑠 is not the same as 𝑠𝑠!
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• During rasterization, we know 𝑠𝑠𝑠, and need to derive 𝑠𝑠 from 𝑠𝑠𝑠
• with some arithmetics, we find

𝑠𝑠 =
𝑠𝑠𝑠𝑧𝑧1

𝑠𝑠𝑠𝑧𝑧1 + 1 − 𝑠𝑠𝑠 𝑧𝑧2
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• Example

• 𝑠𝑠𝑠 = 3
4
→ 𝑠𝑠 =

3
4𝑧𝑧1

3
4𝑧𝑧1+

1
4𝑧𝑧2

= 1
2
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• for arbitrary attributes 𝐴𝐴 along a line:
• 𝑧𝑧-values 𝑧𝑧1 and 𝑧𝑧2
• attribute values 𝐴𝐴1 and 𝐴𝐴2

• 𝐴𝐴 𝑠𝑠 = 𝐴𝐴1 + 𝑠𝑠 𝐴𝐴2 − 𝐴𝐴1 = ⋯ =
𝐴𝐴1
𝑧𝑧1
+𝑠𝑠𝑠 𝐴𝐴2

𝑧𝑧2
−𝐴𝐴1𝑧𝑧1

1
𝑧𝑧1
+𝑠𝑠𝑠( 1𝑧𝑧2

− 1
𝑧𝑧1

)

• Interpolate 𝐴𝐴/𝑧𝑧 and 1/𝑧𝑧
• divide to get interpolated 𝐴𝐴
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Texture Mapping for Rasterized Triangles

• From this, we can derive as approach for interpolating texture coordinates
• interpolate 𝑠𝑠/𝑧𝑧, 𝑡𝑡/𝑧𝑧, and 1/𝑧𝑧 during rasterization
• Per pixel: (𝑠𝑠/𝑧𝑧)/(1/𝑧𝑧), (𝑡𝑡/𝑧𝑧)/(1/𝑧𝑧) → (𝑠𝑠, 𝑡𝑡)

• Also works for arbitrary attributes
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Texture Mapping

• In OpenGL / WebGL:
• 1D, 2D and 3D textures
• textures can have luminance only (grey value), luminance plus alpha, color, or color 

plus alpha
• 8bit per channel, 16bit per channel, or float values
• are sampled in a shader using a sampler object
• homogeneous texture coordinates 𝑠𝑠, 𝑡𝑡, 𝑟𝑟, 𝑞𝑞
• newer OpenGL also supports compressed textures
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Texture Mapping

• In WebGL

• pixel shader
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if (!texHandle) {
var image = document.getElementById(„mytexture“);
texHandle = gl.createTexture();
gl.bindTexture(gl.TEXTURE_2D,texHandle);
gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA,

gl.UNSIGNED_BYTE, image);
} else

gl.bindTexture(gl.TEXTURE_2D,texHandle);

…
uniform sampler2D texture;
varying vec2 uv; // texture coordinate

void main(void) {
…
// finally, apply texture by multiplication
gl_FragColor *= texture2D(texture,uv);

}



Texture Mapping Demo

Computer Graphics 2020/21 - Texture Mapping 31



Procedural Texture Generation

• Textures can come from an image file, e.g. jpg
• or can be generated by a procedure

→ on the fly in a shader
• often based on fractal noise or turbulence functions (see later)

• → Texture synthesis: generate arbitrarily large high-quality texture from a 
small input sample.
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Procedural Texture Generation

• regular stripes dark/bright
brown

• Stripe width/distance:
varies over years

• Shape of stripes slightly
unregular

• Less or more irregular
patterns possible

• Example:
https://www.shadertoy.com/view/ldscDM
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freestocktextures.com
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Procedural Texture Generation

• Procedural texture generation
• Computer generated texture image (1D, 2D or 3D)

created using an algorithm.
• Natural appearance requires some randomness,

but also structure
• All based on Noise Functions
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• Noise Functions:
• “White noise”: Assign random color for every point

→ no coherence
→ not helpful for procedural textures
→ coherency required

• Coherent Noise
• Method for generating coherent noise over space.
• Coherent means: the function values change smoothly.

• First Approach
• choose random values on a grid
• interpolate
• grid size corresponds to noise frequency
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Non coherent

Coherent

Images by Matt Zucker
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• Better approach, proved very practical: Perlin Noise
• At grid points (𝑖𝑖, 𝑗𝑗, 𝑘𝑘) choose random gradient Γ𝑖𝑖𝑖𝑖𝑖𝑖, set values to zero
• Γ𝑖𝑖𝑖𝑖𝑖𝑖 is determined from (𝑖𝑖, 𝑗𝑗, 𝑘𝑘) using an array of precomputed random gradient 

values 𝐺𝐺[] and a hash function 𝜙𝜙() as:
Γ𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐺𝐺 𝜙𝜙 i + 𝜙𝜙 𝑗𝑗 + 𝜙𝜙 𝑘𝑘

→ „pseudorandom“ gradient values, very fast to compute
• Then, these grid point gradients are interpolated
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Procedural Texture Generation

• Simple Perlin Noise is boring
• Gets interesting by adding noise of varying frequency:

37

Sum of all layers
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• Turbulence
• Many natural textures 

contain repeating features 
of different sizes

• Perlin pseudo fractal 
“turbulence” function

• Effectively adds scaled 
copies of noise function on 
top of itself

𝑛𝑛𝑡𝑡 𝑥𝑥 = �
𝑖𝑖

𝑛𝑛(2𝑖𝑖𝑥𝑥)
2𝑖𝑖
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• Procedural texture generation
• Computer generated texture image (1D, 

2D or 3D) created using an algorithm.
• Natural appearance through fractal 

noise, coherence and multi-scale 
representations, e.g. turbulence 
functions. 
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• Procedural texture generation
• Computer generated texture image (1D, 

2D or 3D) created using an algorithm.
• Natural appearance through fractal 

noise, coherence and multi-scale 
representations, e.g. turbulence 
functions. 
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• Perlin noise
• Solid texture
• Based on gradient noise

• Generate an n-dimensional lattice of random gradients
• The noise value is interpolated in the lattice cells, e.g. using linear or cosine interpolation.

• Gradient noise is conceptually different than value or wavelet noise.
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Procedural Texture Generation

http://www.noisemachine.com/talk1/
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Texture Functions: Perlin noise

• other examples:
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wood marble clouds

Images by Matt Zucker

Image by Ken Perlin

see also ShaderToy „Perlin Noise“, e.g.
https://www.shadertoy.com/view/Md3SzB
https://www.shadertoy.com/view/4tdSWr

https://www.shadertoy.com/view/Md3SzB
https://www.shadertoy.com/view/4tdSWr


Texture Functions

• wood shader
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Texture Mapping

• many other applications for textures
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• Non-Graphics Application: „Solarscreens“

Textures Beyond Wallpaper: Normal Maps
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• Normal Map
• texture with 3D normals encoded in RGB
• 8 Bit per component sufficient

• but also 3x10 Bit, 4x16 Bit unsigned, floating point
• [-1,1] to [0;1]

• R = x/2 + 0.5, G = y/2 + 0.5, …
• x = 2R-1, …

Textures Beyond Wallpaper: Normal Maps
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• from height fields
• local differences:

Textures Beyond Wallpaper: Normal Maps
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Normal Maps

• Multiple
Textures

• Pixel
Shader
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gl.activeTexture(gl.TEXTURE0);
gl.bindTexture(gl.TEXTURE_2D,color);

gl.activeTexture(gl.TEXTURE1);
gl.bindTexture(gl.TEXTURE_2D,normalmap);

…
uniform sampler2D color,normalmap;
varying vec2 uv; // texture coordinate

void main(void) {
…
vec3 c = texture2D(color,uv);
vec3 n = texture2D(normalmap,uv);
float diff = dot(n,light);
…
gl_FragColor = …

}



Texture Mapping Demo
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Volumetric Texture Mapping

• e.g., slices from CT data form a volumetric texture

input data 3D representation

illumination

classification
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Volumetric Texture Mapping

• How to render?
→ Polygonal slices with transparent textures

Christoph Rezk-Salama
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Volumetric Texture Mapping

• Variant 1: Axis-aligned slices with 2D textures
→ 3 copies of the data required

Christoph Rezk-Salama
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Volumetric Texture Mapping

• Better: store as 3D texture (supported by OpenGL etc.)
→ 3D texture coordinates required

• Render slices parallel to image plane back to front
→ only one copy in texture memory required

Christoph Rezk-Salama
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slices parallel
to image plane

texturing
polygons

final
image

Trilinear
hardware

interpolation

Volumetric Texture Mapping

Christoph Rezk-Salama

𝜶𝜶-Blending
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Next Lecture

• How to interpolate textures
• Texture Aliasing and Antialiasing
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