
Lecture #11

Texture Antialiasing
Computer Graphics

Winter Term 2020/21

Marc Stamminger / Roberto Grosso

• Due to perspective, a texture can get magnified and minified
• In both cases, aliasing can appear:

• magnification reveals pixels
• minification results in weird patterns

• In this lecture, we will look at both cases

2

Texture Interpolation and Texture Aliasing

magnification

minification

Computer Graphics 2020/21 - Texture Antialiasing

• Up to now
• for each pixel, we interpolate texture coordinates → (𝑠𝑠, 𝑡𝑡)
• fragment shader reads pixel at this position and uses this color

• But: how to map (𝑠𝑠, 𝑡𝑡) to corresponding texture value?
• Issue #1: how to handle coordinates outside [0,1] ?
• Issue #2: how to handle coordinates between pixel centers ?
• Issue #3: how to handle texture minification and resulting aliasing artifacts

3

Texture Mapping

Computer Graphics 2020/21 - Texture Antialiasing

Texture Mapping

• Coordinates outside [0,1]

• Clamping: Repeating:
(𝑠𝑠, 𝑡𝑡) −> (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠), 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡)) (𝑠𝑠, 𝑡𝑡) −> (𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑠𝑠),𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑡𝑡))
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥) = max(0, min(1, 𝑥𝑥)) 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑥𝑥) = 𝑥𝑥 – 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑥𝑥)

4textureComputer Graphics 2020/21 - Texture Antialiasing

• coordinates in between pixel positions → Texture Interpolation
• Two modes:

• Nearest neighbor
• Bilinear interpolation

5

Texture Mapping

(s,t)

Texture values

Computer Graphics 2020/21 - Texture Antialiasing

• “Nearest Neighbor”
• Take color of closest texel (texel = pixel in texture)
• 𝑖𝑖 = 𝑠𝑠𝑛𝑛𝑥𝑥 ; 𝑗𝑗 = 𝑡𝑡𝑛𝑛𝑦𝑦 → 𝑐𝑐 𝑠𝑠, 𝑡𝑡 = 𝑐𝑐𝑖𝑖𝑖𝑖;

6

Texture Interpolation

2x2-Texture

+ Square 

Computer Graphics 2020/21 - Texture Antialiasing

• Bilinear interpolation: Color information of image pixel is mixed with
neighbors, depending on relative distances

• 𝑠𝑠′ = 𝑠𝑠𝑛𝑛𝑥𝑥 − 𝑠𝑠𝑛𝑛𝑥𝑥 ; 𝑡𝑡′ = 𝑡𝑡𝑛𝑛𝑦𝑦 − 𝑡𝑡𝑛𝑛𝑦𝑦
• 𝑐𝑐 𝑠𝑠, 𝑡𝑡 = 1 − 𝑠𝑠′ 1 − 𝑡𝑡′ 𝑐𝑐𝑖𝑖𝑖𝑖 + 𝑠𝑠′ 1 − 𝑡𝑡′ 𝑐𝑐 𝑖𝑖+1 𝑗𝑗 + 1 − 𝑠𝑠′ 𝑡𝑡′𝑐𝑐𝑖𝑖 𝑗𝑗+1 + 𝑠𝑠′𝑡𝑡′𝑐𝑐 𝑖𝑖+1 𝑗𝑗+1

7

Texture Interpolation

2x2-Texture

+ Square 

Computer Graphics 2020/21 - Texture Antialiasing

Texture Interpolation

• Texture 8x8 nearest neighbor bilinear interpolation

• Texture 8x8

Computer Graphics 2020/21 - Texture Antialiasing 8

• Effects of nearest neighbor vs. bilinear filtering become visible for texture
magnification

• Another problem appears for texture minification → Aliasing

9

Texture Interpolation

magnification

minification

Computer Graphics 2020/21 - Texture Antialiasing

Aliasing
Sampling problems:
• missing small objects
• staircase artifacts / jaggies

→ see lecture Rasterization

• appearance of new frequencies
from texture minification

Computer Graphics 2020/21 - Texture Antialiasing 10

fine

new patterns

random

today

• Sampling problem

11

Texture Aliasing

ft = fs

ft < fs

ft > fs!

Current scanline Results

√

√

−

Computer Graphics 2020/21 - Texture Antialiasing

• For now, look at scanlines
• replace checkerboard by

sine wave

12

Aliasing
Image samples

Texture signal

Computer Graphics 2020/21 - Texture Antialiasing

sampling
just fine

sampling
too coarse

→ new
frequencies

near range: fine pixel grid

middle range: pixel grid = texture grid

far range: pixel grid too coarse

sampling
dense

enough

1

1

2

2

3

3

pixel grid

• Fourier analysis can help:
Any function (signal) can be represented as an (infinite) sum of sine
waves with varying frequencies

• Example 1
for Fourier
analysis

13

Fourier Analysis

Computer Graphics 2020/21 - Texture Antialiasing

+

+

+

+

sin(𝑥𝑥)

sin 3𝑥𝑥
3

sin 5𝑥𝑥
5

sin 7𝑥𝑥
7

sin 9𝑥𝑥
9

Fourier Analysis

• Fourier Transformation and back

Computer Graphics 2020/21 - Texture Antialiasing 14

function 𝑓𝑓(𝑥𝑥) in image space

spectrum 𝐹𝐹(𝜔𝜔) in frequency space

Fourier
Transformation

Inverse
Fourier

Transformation

• Sine function in image space and frequency space

• in our representation, spectrum is symmetric and has negative frequencies

15

Fourier Analysis

Computer Graphics 2020/21 - Texture Antialiasing

Fourier Analysis

• Box function in image space and frequency space

Computer Graphics 2020/21 - Texture Antialiasing 16

sin 𝑥𝑥 +
sin 3𝑥𝑥

3 +
sin 5𝑥𝑥

5 + ⋯

omega=5, amplitude=1/5

Fourier Analysis

• Another function in both spaces

Computer Graphics 2020/21 - Texture Antialiasing 17

Fourier Analysis

• By filtering high frequencies, we can smooth the function

Computer Graphics 2020/21 - Texture Antialiasing 18

“low pass filter”
→ filter that lets low

frequencies pass

Fourier Analysis

• By filtering high frequencies, we can smooth the function

Computer Graphics 2020/21 - Texture Antialiasing 19

Aliasing

• Why does that help to understand Aliasing?
• Look at sampled functions

• Sampling creates copies of the spectrum

Computer Graphics 2020/21 - Texture Antialiasing 20

Aliasing

• Why does that help to understand Aliasing?
• Look at sampled functions

• Sampling creates copies of the spectrum
• The finer the sampling, the further apart are the copies

Computer Graphics 2020/21 - Texture Antialiasing 21

sampling
frequ.

Aliasing

• bandlimited signal

• if 𝜔𝜔𝐵𝐵 < 1
2
𝜔𝜔𝑆𝑆, we can reconstruct the original signal with a low-pass filter

Computer Graphics 2020/21 - Texture Antialiasing 22

ωB-ωB

ωS 2ωS-ωS-2ωS

ω

ω

|X(ω)|

|X(ω)|

original signal

½ωS0

Aliasing

• bandlimited signal

• if 𝜔𝜔𝐵𝐵 > 1
2
𝜔𝜔𝑆𝑆, we can no longer reconstruct the original signal

Computer Graphics 2020/21 - Texture Antialiasing 23

ωB-ωB

ωS 2ωS-ωS-2ωS

ω

ω

|X(ω)|

|X(ω)|

original signal

½ωS0

Aliasing

• If sampling is too coarse, high frequencies
of our signal mix with those of the copies.

• We cannot separate these anymore
with a low-pass filter

• This is the reason for aliasing

• Different perspective:
• given a sampling frequency 𝜔𝜔𝑆𝑆
• we band-limit our signal with a low-pass filter with threshold 1

2
𝜔𝜔𝑆𝑆

→ signal gets smoothed, but still contains general structure
→ aliasing is avoided

Computer Graphics 2020/21 - Texture Antialiasing 24

ω

|X(ω)|

contributions from
spectrum on the right

→ appear as new frequencies

filtered out
frequencies

Aliasing

• Remember: cutting off high frequencies means smoothing

• How can we realize such a low-pass filter ?

→ image filtering

Computer Graphics 2020/21 - Texture Antialiasing 25

Image Filtering

• For each pixel p
• replace color of p by the weighted average of its neighbors

Computer Graphics 2020/21 - Texture Antialiasing 26

111
111
111

Image Filtering

• For each pixel p
• replace color of p by the weighted average of its neighbors

Computer Graphics 2020/21 - Texture Antialiasing 27

111
111
111

Image Filtering

• For each pixel p
• replace color of p by the weighted average of its neighbors

Computer Graphics 2020/21 - Texture Antialiasing 28

111
111
111

Image Filtering

• Filter described by filter kernel or filter mask 𝑘𝑘𝑖𝑖,𝑗𝑗:

𝑓𝑓′ 𝑝𝑝 = �
(𝑖𝑖,𝑗𝑗)∈ −𝑛𝑛…𝑛𝑛 2

𝑘𝑘𝑖𝑖,𝑗𝑗 ⋅ 𝑓𝑓(𝑝𝑝 + 𝑖𝑖, 𝑗𝑗)

• Examples:

3x3 Box filter 3x3 tent filter

Computer Graphics 2020/21 - Texture Antialiasing 29

111

111

111

121

242

121
1

16

Aliasing

• Box filter / low pass filter in frequency space

= filtering with kernel function

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥 =
sin 𝑥𝑥
𝑥𝑥

in image space

• But: 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 has infinite support → Value of a pixel depends on entire image!

• More practical alternative: Gauß-Filter with finite support
• cut off at certain radius → finite support
• corresponds to multiplication with a Gauß in frequency space

→ Gauß approximates box of low-pass filter

30Computer Graphics 2020/21 - Texture Antialiasing

https://en.wikipedia.org/wiki/File:Sinc
function(normalized).svg

Image Filtering

• Good choice to blur image: Gauß Filter (cut off at certain distance)
• width can be varied with 𝜎𝜎

Computer Graphics 2020/21 - Texture Antialiasing 31

0.003 0.013 0.022 0.013 0.003
0.013 0.059 0.097 0.059 0.013
0.022 0.097 0.159 0.097 0.022
0.013 0.059 0.097 0.059 0.013
0.003 0.013 0.022 0.013 0.003

5 x 5, σ = 1

x

y

• But with textures, the relation of texture resolution to screen resolution is
not known in advance, and varies over the image…

• Solution: Mip-Mapping
• Generate a hierarchy of lower-resolution textures from original texture

→ each texture is a filtered version of the previous one with double filter size
→ hierarchy of prefiltered versions

• Use bilinear interpolation or other integration technique to create textures

32

MIP-Mapping

Computer Graphics 2020/21 - Texture Antialiasing

MIP-Mapping

• How do we generate the low-resolution textures ?

• Simplest solution (for now): Box filter
• average 2x2 pixel blocks to one

Computer Graphics 2020/21 - Texture Antialiasing 33

MIP-Mapping

• How do we generate the low-resolution textures ?

• Simplest solution (for now): Box filter
• average 2x2 pixel blocks to one

Computer Graphics 2020/21 - Texture Antialiasing 34

MIP-Mapping

• How do we generate the low-resolution textures ?

• Simplest solution (for now): Box filter
• average 2x2 pixel blocks to one

Computer Graphics 2020/21 - Texture Antialiasing 35

MIP-Mapping

• Level 6: 64x64 Level 5: 32x32 Level 4: 16x16 Level 3: 8x8 …

Computer Graphics 2020/21 - Texture Antialiasing 36

MIP-Mapping

• Level 3: 8x8 Level 2: 4x4 Level 1: 2x2 Level 0: 1x1

Computer Graphics 2020/21 - Texture Antialiasing 37

• How can we determine the appropriate MIPMap-Level ?
• Remember: we are fine as long as a texel is not smaller than a pixel

→ estimate texel size and compare it with pixel size

• At render time for a particular pixel:
• determine 𝑝𝑝 = ratio between pixel and texel size
• MIP-Map-level to choose is then

𝐿𝐿 = log2 𝑝𝑝 + 𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
• 𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 allows user to trade anti-aliasing versus blur:

• MIP-Map-level too coarse → blurring
• MIP-Map-level too fine → aliasing
• optimal choice depends on texture
• usually, 𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 0

38

MIP-Mapping

Computer Graphics 2020/21 - Texture Antialiasing

MIP-Mapping

• Result for infinite plane with 8x8 checkerboard:

• Checkerboard: very difficult example, works much better for other textures

Computer Graphics 2020/21 - Texture Antialiasing 39

aliasing remains
(we should adapt bias)

horizon

MIP-Map-levels 0,1,2

hard transition

MIP-Map-level 3

Texture Mapping Demo

Computer Graphics 2020/21 - Texture Antialiasing 40

• → at the transition between different levels, a seem gets visible

• → thus, interpolate between levels according to fractional part of 𝐿𝐿
• →”trilinear” interpolation

• Bilinear interpolation at (𝑠𝑠, 𝑡𝑡) in two succeeding textures from the mipmap
hierarchy, then linear interpolation between these two values

41

MIP-Mapping

Texture n+1

Texture n

Value at level n+1

Value at level n

Final value

Computer Graphics 2020/21 - Texture Antialiasing

• Texture value interpolation
• Trilinear interpolation: Example

42

MIP-Mapping

Computer Graphics 2020/21 - Texture Antialiasing

MIP-Mapping

• In WebGL:

• upload all levels separately, or, simpler:

Computer Graphics 2020/21 - Texture Antialiasing 43

if (!texHandle) {
var image = document.getElementById(„mytexture“);
texHandle = gl.createTexture();
gl.bindTexture(gl.TEXTURE_2D,texHandle);
gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA,

gl.UNSIGNED_BYTE, image);
} else

gl.bindTexture(gl.TEXTURE_2D,texHandle);

MIPMap-Level

…
gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA,

gl.UNSIGNED_BYTE, image);
gl.generateMipmap(gl.TEXTURE_2D);
…

MIP-Mapping

• Set modes for magnification and minification:

Computer Graphics 2020/21 - Texture Antialiasing 44

…
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER,

gl.LINEAR);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER,

gl.LINEAR_MIPMAP_LINEAR);
…

GL constant Description

gl.NEAREST nearest neighbor

gl.LINEAR linear interpolation

gl.NEAREST_MIPMAP_NEAREST Select nearest mipmap level and
perform nearest interpolation.

gl.NEAREST_MIPMAP_LINEAR Linear interpolation between mipmap
levels and nearest neighbor filtering

gl.LINEAR_MIPMAP_NEAREST Select nearest mipmap level and
perform linear filtering

gl.LINEAR_MIPMAP_LINEAR Linear interpolation between levels
and linear filtering

minification

magnification

Pixel Footprint

• Up to now we transferred ideas from 1D signals to 2D textures
→ additional issues to consider for 2D ?

• consider the pixel footprint in texture space

Computer Graphics 2020/21 - Texture Antialiasing 45

→ screen pixel should show average over
its footprint in texture space

texture grid

footprint of
screen

pixel #1

screen pixel grid

texel #1

texel #2

footprint of
screen

pixel #2

texture
magnif.

texture
minif.

project
pixel corners

to texture
space

Pixel Footprint

• MIP-Mapping:
choose MIP-Map-Level, such that pixel footprint covers one pixel

Computer Graphics 2020/21 - Texture Antialiasing 46

level 2level 3 level 1 level 0

size of footprint vs. texel size

Pixel Footprint

• But what about this case ?

• MIP-Mapping assumes (approximately) square footprints

Computer Graphics 2020/21 - Texture Antialiasing 47

level 2level 3 level 1 level 0

fits vertically fits horizontally

Pixel Footprint

• If we look at a texture
under a grazing angle,
the footprint gets
elongated

• If we choose level 0, we get blurring in horizontal direction
• If we choose level 3, we get aliasing in vertical direction
• If we choose level 1 or 2, we get blurring and aliasing

Computer Graphics 2020/21 - Texture Antialiasing 48

level0

level 3

Anisotropic Filtering

• non-square pixel footprints → anisotropic filtering

• Solution 1:
Anisotropic MIP-Map

→ contains downfiltered
versions of size [2𝑚𝑚, 2𝑛𝑛]

• 4 times as large as
original texture

Computer Graphics 2020/21 - Texture Antialiasing 49

ht
tp

s:
//

en
.w

ik
ip

ed
ia

.o
rg

/w
ik

i/F
ile

:M
ip

M
ap

_E
x

am
pl

e_
ST

S1
01

_A
ni

so
tr

op
ic

.p
ng

Anisotropic Filtering

Anisotripic MIP-Maps
• work in this case…

• …but not in this case:

Computer Graphics 2020/21 - Texture Antialiasing 50

Anisotropic Filtering

• Extend MIP-Maps by rotation? … too expensive …

• Instead, today‘s hardware combines MIP-Mapping (isotropic or anisotropic)
and sampling:

Evaluate texture at multiple positions
within a pixel, and use MIP-Mapping
for each such sample

• Typical number of samples: 4 or 8
→ many more texture samples
→ expensive

• Choose only, if necessary

Computer Graphics 2020/21 - Texture Antialiasing 51

Anisotropic Filtering

Computer Graphics 2020/21 - Texture Antialiasing 52

https://en.wikipedia.org/wiki/File:Anisotropic_filtering_en.png

Next Week

• Modeling and Scene Graphs

Computer Graphics 2020/21 - Texture Antialiasing 53

	Lecture #11��Texture Antialiasing
	Texture Interpolation and Texture Aliasing
	Texture Mapping
	Texture Mapping
	Texture Mapping
	Texture Interpolation
	Texture Interpolation
	Texture Interpolation
	Texture Interpolation
	Aliasing
	Texture Aliasing
	Aliasing
	Fourier Analysis
	Fourier Analysis
	Fourier Analysis
	Fourier Analysis
	Fourier Analysis
	Fourier Analysis
	Fourier Analysis
	Aliasing
	Aliasing
	Aliasing
	Aliasing
	Aliasing
	Aliasing
	Image Filtering
	Image Filtering
	Image Filtering
	Image Filtering
	Aliasing
	Image Filtering
	MIP-Mapping
	MIP-Mapping
	MIP-Mapping
	MIP-Mapping
	MIP-Mapping
	MIP-Mapping
	MIP-Mapping
	MIP-Mapping
	Texture Mapping Demo
	MIP-Mapping
	MIP-Mapping
	MIP-Mapping
	MIP-Mapping
	Pixel Footprint
	Pixel Footprint
	Pixel Footprint
	Pixel Footprint
	Anisotropic Filtering
	Anisotropic Filtering
	Anisotropic Filtering
	Anisotropic Filtering
	Next Week

