
Lecture #12

Modeling & Scene Graphs
Computer Graphics

Winter Term 2020/21

Marc Stamminger / Roberto Grosso

The Rendering Pipeline

• Coarse Version 3D-Scene

Transformation

Rasterisation

Lighting and Texture

Framebuffer

CPU

GPU

Computer Graphics 2020/21 – Modeling and Scene Graphs 2

The Rendering Pipeline

• Coarse Version

Transformation

Rasterisation

Lighting / Texture

Framebuffer

Computer Graphics 2020/21 – Modeling and Scene Graphs 3

CPU

GPU
3D-Scene

Objects in Files

• Modeling tools output their objects to files, e.g. to OBJ file format:

4

v 1.000000 -1.000000 -1.000000
v 1.000000 -1.000000 1.000000
v -1.000000 -1.000000 1.000000
v -1.000000 -1.000000 -1.000000
v 1.000000 1.000000 -1.000000
v 0.999999 1.000000 1.000001
v -1.000000 1.000000 1.000000
v -1.000000 1.000000 -1.000000
vn -0.000000 -1.000000 0.000000
vn 0.000000 1.000000 -0.000000
vn 1.000000 0.000000 0.000000
vn -0.000000 -0.000000 1.000000
vn -1.000000 -0.000000 -0.000000
vn 0.000000 0.000000 -1.000000
f 1//1 2//1 3//1 4//1
f 5//2 8//2 7//2 6//2
f 1//3 5//3 6//3 2//3
f 2//4 6//4 7//4 3//4
f 3//5 7//5 8//5 4//5
f 5//6 1//6 4//6 8//6

Vertex positions

Vertex normals

Topology 3//1 means:
vertex with 3rd position
and 1st normal

in general: (a/b/c: vertex, tex.coord, normal)

Computer Graphics 2020/21 – Modeling and Scene Graphs

Objects in GPU memory

• In the end, all objects are triangle meshes with
• Geometry: per-vertex data (3D position, normals, texture coordinates, …)
• Topology: index buffer

• Ideally, these meshes are stored in GPU memory in buffers for fast access

• remember from lecture #4 “GPU rendering”

var v = [...];
var i = [...];

var vbo = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, vbo);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(v), gl.STATIC_DRAW);

var ibo = gl.createBuffer();
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, ibo);
gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, new Uint16Array(i), gl.STATIC_DRAW);

gl.drawElements(gl.TRIANGLES, 6, gl.UNSIGNED_SHORT, 0);
Computer Graphics 2020/21 – Modeling and Scene Graphs 5

Scene Objects

• Simple objects such as spheres, cones, cylinders, …

• Free-form surfaces
→ described mathematically

• Objects designed by a modeling tool
→ e.g., Blender

• Scanned objects
→ see lecture
“Geometry processing”

Computer Graphics 2020/21 – Modeling and Scene Graphs 6

blender.org

Simple Objects

• Simple shapes, spheres, cylinders, …

• Tessellation:
Generate a triangle mesh that approximates
the shape

• fine tessellation:
• Many, small triangles
• High precision, reduced performance

• coarse tessellation:
• fewer triangles
• fast to render, unround surfaces

By MaxDZ8 (Snapshot from a program I’ve written.)
[Public domain], via Wikimedia Commons

Computer Graphics 2020/21 – Modeling and Scene Graphs 7

https://commons.wikimedia.org/wiki/File:WireSphereLowTass.MaxDZ8.jpg

• Based on Bezier Curves
(known from AlgoKS)

8

Free-Form Surfaces

Computer Graphics 2020/21 – Modeling and Scene Graphs

Remember: Bezier Curves

• Cubic curves:
four control points
→ control polygon

• End points are interpolated,
curve is tangential to control
polygon at end points

Computer Graphics 2020/21 – Modeling and Scene Graphs 9

Remember: Bezier Curves

• Cubic curves:
four control points
→ control polygon

• End points are interpolated,
curve is tangential to control
polygon at end points

Computer Graphics 2020/21 – Modeling and Scene Graphs 10

Remember: Bezier Curves

• Cubic curves:
four control points
→ control polygon

• End points are interpolated,
curve is tangential to control
polygon at end points

Computer Graphics 2020/21 – Modeling and Scene Graphs 11

Remember: Bezier Curves

• Cubic curves:
four control points
→ control polygon

• End points are interpolated,
curve is tangential to control
polygon at end points

Computer Graphics 2020/21 – Modeling and Scene Graphs 12

Bezier Curves

• Based on Bernstein Polynomials:

𝐵𝐵𝑖𝑖𝑛𝑛 𝑢𝑢 = 𝑛𝑛
𝑖𝑖 𝑢𝑢𝑖𝑖 1 − 𝑢𝑢 𝑛𝑛−𝑖𝑖

• n: degree, usually 2 (quadratic) or 3 (cubic)
• n control points

• 𝐶𝐶 𝑢𝑢 = ∑𝑖𝑖=0..3 𝐵𝐵𝑖𝑖3(𝑢𝑢) 𝐶𝐶𝑖𝑖

• Bases sum to one →
convex combination of control points

Computer Graphics 2020/21 – Modeling and Scene Graphs 13

Bezier Curves

• More control points → higher degree → less
stable

• To handle longer curves, Bezier curves can be
joined

• Simple conditions on control points to get
smooth curves at joins

Computer Graphics 2020/21 – Modeling and Scene Graphs 14

Bezier Curves

• More control points → higher degree → less
stable

• To handle longer curves, Bezier curves can be
joined

• Simple conditions on control points to get
smooth curves at joins

Computer Graphics 2020/21 – Modeling and Scene Graphs 15

collinear → continuous tangent

B-Splines

• Alternative polynomial basis: B-Spline-basis
• Degree: usually 2 or 3

• Number of control points independent of degree

• Definition uniform B-Spline

• 𝑁𝑁𝑖𝑖0 𝑢𝑢 = �1 ↔ 𝑖𝑖 ≤ 𝑢𝑢 < 𝑖𝑖 + 1
0 else

• 𝑁𝑁𝑖𝑖𝑘𝑘 𝑢𝑢 = 𝑢𝑢−𝑖𝑖
𝑘𝑘
𝑁𝑁𝑖𝑖𝑘𝑘−1 𝑢𝑢 + 𝑖𝑖+1−𝑢𝑢

𝑘𝑘
𝑁𝑁𝑖𝑖+1𝑘𝑘−1(𝑢𝑢)

Computer Graphics 2020/21 – Modeling and Scene Graphs 16

Demo Polynomial Curves

Computer Graphics 2020/21 – Modeling and Scene Graphs 17

From Curves to Surfaces

• 2D curves → 3D surfaces: Tensor product approach
• (in AlgoKS you heard about alternative approach of Coons Patches)

• 𝑚𝑚 × 𝑛𝑛 control points

Computer Graphics 2020/21 – Modeling and Scene Graphs 18

B-Spline Surfaces

• 𝑚𝑚 × 𝑛𝑛 control points = 𝑚𝑚 control polygons with 𝑛𝑛 points each

• evaluate surface at parameter value (𝑢𝑢, 𝑣𝑣):
• evaluate each of the m curves at parameter 𝑢𝑢

→ new control polygon with 𝑛𝑛 points
• evaluate this curve at parameter 𝑣𝑣

19

𝑢𝑢

𝑣𝑣

Computer Graphics 2020/21 – Modeling and Scene Graphs

NURBS Surfaces in Blender

• NURBS surface in blender (NURBS are a variant of Bsplines)

Computer Graphics 2020/21 – Modeling and Scene Graphs 20

NURBS Surfaces in Blender

• NURBS surface in blender: after modification of control points

Computer Graphics 2020/21 – Modeling and Scene Graphs 21

Subdivision Surfaces

• Subdivision: Simple rules to subdivide control polygon, such that new
control polygon generates the same curve

• Example: subdivision rule for uniform cubic B-Splines:
for each edge of the control polygon, set two control points at ¼ and ¾ of the
edge

→ “corner cutting”

• When iterating subdivision, control polygon converges to curve
→ fastest approach to generate curves

Computer Graphics 2020/21 – Modeling and Scene Graphs 22

Subdivision Surfaces

• Tensor Product B-Spline Subdivison:
Perform curve subdivision row-wise and column-wise alternating

Computer Graphics 2020/21 – Modeling and Scene Graphs 23

Subdivision Surfaces

• Idea:
• user edits some coarse mesh
• do some subdivision steps
• → control mesh gets finer and converges to smooth surface

• Model coarse mesh, make smooth by subdivision
→ “Subdivision Surfaces”

• Problem:
• subdivision as described before requires rectangular topology…
• for the cubic case: each vertex should have four surrounding quads

• Subdivision Surfaces extend subdivision rules to arbitrary topology
→ critical: irregular vertices with valence != 4

• Example: Catmull-Clark

Computer Graphics 2020/21 – Modeling and Scene Graphs 24

Subdivision Surfaces

• Catmull-Clark rules:
given some mesh of quads

• first, add face points:
average of face’s vertices

Computer Graphics 2020/21 – Modeling and Scene Graphs 25

Subdivision Surfaces

• Catmull-Clark rules:
given some mesh of quads

• first, add face points:
average of face’s vertices

• second, add edge points:
average of edge’s vertices
and face points

Computer Graphics 2020/21 – Modeling and Scene Graphs 26

Subdivision Surfaces

• Catmull-Clark rules:
given some mesh of quads

• first, add face points:
average of face’s vertices

• second, add edge points:
average of edge’s vertices
and face points

• finally, move original points:
weighted average of
neighbors, edge points,
and face points

Computer Graphics 2020/21 – Modeling and Scene Graphs 27

Subdivision Surfaces

• Catmull-Clark Subdivision

Computer Graphics 2020/21 – Modeling and Scene Graphs 28

Geri’s game, Pixar

Subdivision Surfaces

• Example from blender: coarse Monkey object

Computer Graphics 2020/21 – Modeling and Scene Graphs 29

Subdivision Surfaces

• Example from blender: After two subdivision steps

Computer Graphics 2020/21 – Modeling and Scene Graphs 30

Subdivision Surfaces

• Example from blender: After two subdivision steps, with smooth shading

Computer Graphics 2020/21 – Modeling and Scene Graphs 31

Tessellation / Subdivision

• General Idea:
• store coarse model only
• maybe animate this coarse model
• make subdivision / tessellation just before rendering

• Many variants of free-form surfaces and subdivision schemes
→ lecture “Geometric Modeling”

• Also in interactive graphics: Hardware Tessellation
• Upload coarse model to GPU
• GPU then does the subdivision at render time
• requires new shader types Geometry Shader, Tessellation Shader, Mesh Shader
• → lecture “Interactive Computer Graphics”

Computer Graphics 2020/21 – Modeling and Scene Graphs 32

Scene Graphs

• Until now, we considered single objects
• But scenes consists of multiple objects, that can maybe move, share

shaders, share textures etc.

• All this is modelled in a SceneGraph

Computer Graphics 2020/21 – Modeling and Scene Graphs 33

Scene Graphs

• remember from Lecture #1

34Computer Graphics 2020/21 – Modeling and Scene Graphs

svg

group
fill=“red”

group
fill=“green”

group
fill=“blue”

group
#shape

circle

rect

• More complex example: model of mensa scene
• Walls, floor, ceiling, windows

• 10 rows of tables
• Every table row: 8 groups of tables and 10 chairs

• ⇒ Scene tree

35

Scene Graphs

mensa

walls floor ceiling table row 1 table row 10

table group 1.1 table group 1.8

table 1.1 chair 1.1.1 chair 1.1.10…

…

… … …

… …

…………

Computer Graphics 2020/21 – Modeling and Scene Graphs

• leaf nodes table and chair all have same geometry

• Just transformations of leaf nodes differ ⇒ scene graphs share these
common geometries

36

Hierarchical Modeling

Transformation node
• transformation +

list of children

Group node:
• list of children

Computer Graphics 2020/21 – Modeling and Scene Graphs

mensa

walls floor ceiling
table row 1 table row 10

table chair 1 chair 10…

table group

…

chair

table row

table group 1 table group 10…

Scenes

• Scene stored in Scene Graph
→ on the CPU
→ Hierarchical Modelling

• Scene graph traversal
→ updates scene objects, animates, simulates, …
→ generates scene object triangle meshes

plus their modeling transformation
plus materials, plus textures…

→ handles upload of geometry to GPU, resorting etc.
→ generates OpenGL drawcalls
→ makes rendering optimizations, e.g. culling, sorting, …
→ adds nice effects: shadows, fog, depth of field, …

Computer Graphics 2020/21 – Modeling and Scene Graphs 37

• Organization of scene

38

Hierarchical Modeling

Computer Graphics 2020/21 – Modeling and Scene Graphs

• Simple Example in scene format VRML with Groups

39

Hierarchical Modeling

Group {
numObjects 3
Group {

numObjects 3
Box { <BOX PARAMS> }
Box { <BOX PARAMS> }
Box { <BOX PARAMS> }}

Group {
numObjects 2
Group {

Box { <BOX PARAMS> }
Box { <BOX PARAMS> }
Box { <BOX PARAMS> }}

Group {
Box { <BOX PARAMS> }
Sphere { <SPHERE PARAMS> }
Sphere { <SPHERE PARAMS> }}}

Plane { <PLANE PARAMS> }}

Computer Graphics 2020/21 – Modeling and Scene Graphs

• Adding Transformations

40

Hierarchical Modeling

Computer Graphics 2020/21 – Modeling and Scene Graphs

• Transform nodes to position the logical
groupings of objects within the scene

41

Hierarchical Modeling

Computer Graphics 2020/21 – Modeling and Scene Graphs

Hierarchical Modeling

Computer Graphics 2020/21 – Modeling and Scene Graphs 42

Group {
numObjects 3
Transform {

ZRotate { 45 }
Group {

numObjects 3
Box { <BOX PARAMS> }
Box { <BOX PARAMS> }
Box { <BOX PARAMS> } } }

Transform {
Translate { -2 0 0 }
Group {

numObjects 2
Group {

Box { <BOX PARAMS> }
Box { <BOX PARAMS> }
Box { <BOX PARAMS> } }

Group {
Box { <BOX PARAMS> }
Sphere { <SPHERE PARAMS> }
Sphere { <SPHERE PARAMS> } } } }

Plane { <PLANE PARAMS> } }

• Rendering this graph is done using a depth traversal of the graph
• There is always one current material, one current matrix, etc.

• Matrices are efficiently cumulated using a Matrix Stack

• Matrix stack
• stack of 4 x 4 matrices
• Push (matrix m)

• Duplicate top matrix
• Apply m to top matrix

• Pop ()
• Remove top matrix

43

Hierarchical Modeling

M1 M2 M3 M3·m

M1 M2 M3

M1 M2 M3

M1 M2

push(m)

pop()

Computer Graphics 2020/21 – Modeling and Scene Graphs

Hierarchical Modeling

• Handling transformations using matrix stack

Computer Graphics 2020/21 – Modeling and Scene Graphs 44

class Node { ... }

class TransformNode extends Node {
Transformation t;
void render(MatrixStack stack) {

stack.push(t);
for (each child i)

i.render(stack);
stack.pop();

} }

class Object extends Node {
void render(MatrixStack stack) {

render Object with modeling matrix stack.top();
} }

Group {
numObjects 3
Group {

numObjects 3
Box { <BOX PARAMS> }
Box { <BOX PARAMS> }
Box { <BOX PARAMS> } }

Group {
numObjects 2
Group {

Box { <BOX PARAMS> }
Box { <BOX PARAMS> }
Box { <BOX PARAMS> } }

Group {
Box { <BOX PARAMS> }
Sphere { <SPHERE PARAMS> }
Sphere { <SPHERE PARAMS> } } }

Plane { <PLANE PARAMS> } }

• Adding Materials

45

Hierarchical Modeling

Computer Graphics 2020/21 – Modeling and Scene Graphs

46

Hierarchical Modeling
Group {

numObjects 3
Material { <BLUE> }
Group {

numObjects 3
Box { <BOX PARAMS> }
Box { <BOX PARAMS> }
Box { <BOX PARAMS> } }

Group {
numObjects 2
Material { <BROWN> }
Group {

Box { <BOX PARAMS> }
Box { <BOX PARAMS> }
Box { <BOX PARAMS> } }

Group {
Material { <GREEN> }
Box { <BOX PARAMS> }
Material { <RED> }
Sphere { <SPHERE PARAMS> }
Material { <ORANGE> }
Sphere { <SPHERE PARAMS> } } }
Material { <BLACK> }

Plane { <PLANE PARAMS> } }Computer Graphics 2020/21 – Modeling and Scene Graphs

multiple materials per group
→ affects “following” nodes

Hierarchical Modeling

• Handles using current material

Computer Graphics 2020/21 – Modeling and Scene Graphs 47

class Node { ... }

class Context { Material currentMaterial; MatrixStack stack; ... }

class MaterialNode extends Node {
Material M;
void render(Context c) {

c.currentMaterial = M;
} }

class Object extends Node {
void render(Context c) {

render Object with material c.currentMaterial and matrix c.stack.top();
} }

Scene Graphs

Scene Graphs…
• are a data structure for hierarchical modeling

• also store informations such as lights, cameras, textures, …

• can also be used for other optimizations
• Shader sorting
• View frustum culling
• …

Computer Graphics 2020/21 – Modeling and Scene Graphs 48

Scene Graphs - Sorting

• Shader / Material / Texture Sorting:
Switching shaders, material, or textures is often rather expensive

• One possible option for optimization:
Resort tree, so that such switches are reduced

• Strongly depends on target hardware, but large performance gains possible

Computer Graphics 2020/21 – Modeling and Scene Graphs 49

Scene Graphs - View Frustum Culling

• View frustum culling:
For every node in the tree,
store a bounding box
with the minimum and
maximum 𝑥𝑥,𝑦𝑦, 𝑧𝑧 values

• At render time, test this box
against view frustum

• if box is completely outside
view frustum, we can skip the
entire subtree
→ view frustum culling

• if box is completely inside, we can
skip tests for children and always
have to render

• Also works on hierarchy of bounding boxes

Computer Graphics 2020/21 – Modeling and Scene Graphs 50

Scene Graphs – Occlusion Culling

• Occlusion culling:
Avoid rendering of objects that
are within the view frustum,
but completely hidden by
objects in front
→ far more difficult

• One first, simple variant:
• hierarchical z-Buffer
• implemented on good GPUs

Computer Graphics 2020/21 – Modeling and Scene Graphs 51

tree withing view
frustum, but
hidden by wall

Occlusion Culling: Hierarchical z-Buffer

• store hierarchical version of z-Buffer
• Level 0: z-Buffer

• coarser levels: maximum z-value of children

1 2
7 3

7

Computer Graphics 2020/21 – Modeling and Scene Graphs 52

53

Occlusion Culling: Hierarchical z-Buffer

• when rendering an object
• project bounding box
• determine level of hierarchial z-buffer with

corresponding size
• examine (max. 4) nodes of hierarchical z-buffer

that cover object
• if all z-values smaller than that of bounding box

→ object hidden

Computer Graphics 2020/21 – Modeling and Scene Graphs

Occlusion Culling: Hierarchical z-Buffer

• hierarchical z-Buffer
• must keep hierarchy consistent
• if a value in depth-buffer is to

be changed, propagate upwards

• supported by new GPUs

1 2
3 7

7 7

21 3

21

1 2
3 5

5 7

21 3

21

Computer Graphics 2020/21 – Modeling and Scene Graphs 54

Scene Graphs: Occlusion Culling

• hierarchical z-Buffer
• works best, if scene is rendered from front to back

• Optimization by Scene Graph
• during render traversal: traverse nodes (roughly) front to back
• can conflict with shader / texture sorting…
• more sophisticated occlusion culling approaches possible:

Portals / occlusion queries / …

Computer Graphics 2020/21 – Modeling and Scene Graphs 55

Occlusion Queries

• OpenGL occlusion test
• special render mode:

• render nothing, but count number of pixels set (for each object)

• occlusion culling:
• per object:

• set counter to zero
• render bounding box in OccCull-mode
• render object only, if counter > 0
• or, more sloppy: render object only if counter > small n
• or: render simplified object if counter small
• or: …

extra slides
not relevant for exam

Computer Graphics 2020/21 – Modeling and Scene Graphs 56

Occlusion Queries

• OpenGL occlusion culling
• very general, very simple
• ideally: scene should be rendered from front to back
• disadvantage:

• the test stalls the pipeline
• depth sorting is unwanted overhead on tile-based deffered rendering
• a test can be expensive as thousands of triangles!

bbox test draw bbox test draw

stall stall

extra slides
not relevant for exam

Computer Graphics 2020/21 – Modeling and Scene Graphs 57

Occlusion Queries

• optimization:
• several counters
• activate counters by commands that don‘t stall pipeline
• one can ask (asynchronous) whether result for a single counter is available

→ if not, continue with next nodes
→ hide latency

• or query all counters at once → only one pipeline stall
• select counter 1, render bbox 1
• select counter 2, render bbox 2
• …
• get counters
• if (counter 1 > 0) render object 1
• if (counter 2 > 0) render object 2
• …

extra slides
not relevant for exam

Computer Graphics 2020/21 – Modeling and Scene Graphs 58

Occlusion Queries

• several counters, only one stall

bbox
counter 1

bbox
counter 2

draw 1

bbox
counter 3

draw 2 draw 3

…

…

get
counters

stall

extra slides
not relevant for exam

Computer Graphics 2020/21 – Modeling and Scene Graphs 59

Coherent Hierarchical Culling

• Bittner et al.: Coherent Hierarchical Culling: Hardware Occlusion Queries Made
Useful, EUROGRAPHICS 2004

• Observation: culling results are coherent, i.e. they likely don‘t change over frames
• previously hidden objects probably remain invisible
• previously visible objects are probably visible again

• → Optimization:
• previously invisible nodes:

• start occlusion query
• if query results in „visible“: mark as visible and render

• previously visible nodes:
• render immediately
• confirm visibility by new query

• integration with hierarchy traversal necessary

extra slides
not relevant for exam

Computer Graphics 2020/21 – Modeling and Scene Graphs 60

Coherent Hierarchical Culling

• Previously visible nodes:
• inner nodes → continue with children
• leaves → render immediately and start occlusion query

• Previously invisible nodes:
• start occlusion query (with bbox)

• When an occlusion query result arrives
• if object visible

• set visibility flag
• if node was previously visible

→ done
• if node was previously invisible

→ inner nodes: traverse children
→ leaves: render

• else
• clear visibility flag

extra slides
not relevant for exam

Computer Graphics 2020/21 – Modeling and Scene Graphs 61

Coherent Hierarchical Culling

• V,I: visibile, invisible nodes
• termination nodes: traversal ends here

• pull up/down: propagate visibility information

• solid circles: visibility query done

frame i frame i+1

extra slides
not relevant for exam

Computer Graphics 2020/21 – Modeling and Scene Graphs 62

Scene Graphs

• Scene Graphs – often also called Render Engines (with a scene graph as main
data structure)

• Several of these are available, e.g.
• very old: OpenInventor
• newer ones: OpenSceneGraph, OpenSG, …
• state-of-the-art: Unreal Engine, Unity

Computer Graphics 2020/21 – Modeling and Scene Graphs 63

extra slides
not relevant for exam

Next Lecture

• Virtual Reality

64Computer Graphics 2020/21 – Modeling and Scene Graphs

	Lecture #12��Modeling & Scene Graphs
	The Rendering Pipeline
	The Rendering Pipeline
	Objects in Files
	Objects in GPU memory
	Scene Objects
	Simple Objects
	Free-Form Surfaces
	Remember: Bezier Curves
	Remember: Bezier Curves
	Remember: Bezier Curves
	Remember: Bezier Curves
	Bezier Curves
	Bezier Curves
	Bezier Curves
	B-Splines
	Demo Polynomial Curves
	From Curves to Surfaces
	B-Spline Surfaces
	NURBS Surfaces in Blender
	NURBS Surfaces in Blender
	Subdivision Surfaces
	Subdivision Surfaces
	Subdivision Surfaces
	Subdivision Surfaces
	Subdivision Surfaces
	Subdivision Surfaces
	Subdivision Surfaces
	Subdivision Surfaces
	Subdivision Surfaces
	Subdivision Surfaces
	Tessellation / Subdivision
	Scene Graphs
	Scene Graphs
	Scene Graphs
	Hierarchical Modeling
	Scenes
	Hierarchical Modeling
	Hierarchical Modeling
	Hierarchical Modeling
	Hierarchical Modeling
	Hierarchical Modeling
	Hierarchical Modeling
	Hierarchical Modeling
	Hierarchical Modeling
	Hierarchical Modeling
	Hierarchical Modeling
	Scene Graphs
	Scene Graphs - Sorting
	Scene Graphs - View Frustum Culling
	Scene Graphs – Occlusion Culling
	Occlusion Culling: Hierarchical z-Buffer
	Occlusion Culling: Hierarchical z-Buffer
	Occlusion Culling: Hierarchical z-Buffer
	Scene Graphs: Occlusion Culling
	Occlusion Queries
	Occlusion Queries
	Occlusion Queries
	Occlusion Queries
	Coherent Hierarchical Culling
	Coherent Hierarchical Culling
	Coherent Hierarchical Culling
	Scene Graphs
	Next Lecture

