
Lecture #12

Modeling & Scene Graphs
Computer Graphics

Winter Term 2020/21

Marc Stamminger / Roberto Grosso



The Rendering Pipeline

• Coarse Version 3D-Scene

Transformation

Rasterisation

Lighting and Texture

Framebuffer

CPU

GPU

Computer Graphics 2020/21 – Modeling and Scene Graphs 2



The Rendering Pipeline

• Coarse Version

Transformation

Rasterisation

Lighting / Texture

Framebuffer

Computer Graphics 2020/21 – Modeling and Scene Graphs 3

CPU

GPU
3D-Scene



Objects in Files

• Modeling tools output their objects to files, e.g. to OBJ file format:

4

v 1.000000 -1.000000 -1.000000
v 1.000000 -1.000000 1.000000
v -1.000000 -1.000000 1.000000
v -1.000000 -1.000000 -1.000000
v 1.000000 1.000000 -1.000000
v 0.999999 1.000000 1.000001
v -1.000000 1.000000 1.000000
v -1.000000 1.000000 -1.000000
vn -0.000000 -1.000000 0.000000
vn 0.000000 1.000000 -0.000000
vn 1.000000 0.000000 0.000000
vn -0.000000 -0.000000 1.000000
vn -1.000000 -0.000000 -0.000000
vn 0.000000 0.000000 -1.000000
f 1//1 2//1 3//1 4//1
f 5//2 8//2 7//2 6//2
f 1//3 5//3 6//3 2//3
f 2//4 6//4 7//4 3//4
f 3//5 7//5 8//5 4//5
f 5//6 1//6 4//6 8//6

Vertex positions

Vertex normals

Topology 3//1 means:
vertex with 3rd position
and 1st normal

in general: (a/b/c: vertex, tex.coord, normal)

Computer Graphics 2020/21 – Modeling and Scene Graphs



Objects in GPU memory

• In the end, all objects are triangle meshes with
• Geometry: per-vertex data (3D position, normals, texture coordinates, …)
• Topology: index buffer

• Ideally, these meshes are stored in GPU memory in buffers for fast access

• remember from lecture #4 “GPU rendering”

var v = [...];
var i = [...];

var vbo = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, vbo);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(v), gl.STATIC_DRAW);

var ibo = gl.createBuffer();
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, ibo);
gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, new Uint16Array(i), gl.STATIC_DRAW);

gl.drawElements(gl.TRIANGLES, 6, gl.UNSIGNED_SHORT, 0);
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Scene Objects

• Simple objects such as spheres, cones, cylinders, …

• Free-form surfaces
→ described mathematically

• Objects designed by a modeling tool
→ e.g., Blender

• Scanned objects
→ see lecture
“Geometry processing”
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Simple Objects

• Simple shapes, spheres, cylinders, …

• Tessellation:
Generate a triangle mesh that approximates
the shape

• fine tessellation:
• Many, small triangles
• High precision, reduced performance

• coarse tessellation:
• fewer triangles
• fast to render, unround surfaces

By MaxDZ8 (Snapshot from a program I’ve written.) 
[Public domain], via Wikimedia Commons
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https://commons.wikimedia.org/wiki/File:WireSphereLowTass.MaxDZ8.jpg


• Based on Bezier Curves
(known from AlgoKS)

8

Free-Form Surfaces
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Remember: Bezier Curves

• Cubic curves:
four control points
→ control polygon

• End points are interpolated,
curve is tangential to control
polygon at end points
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Bezier Curves

• Based on Bernstein Polynomials:

𝐵𝐵𝑖𝑖𝑛𝑛 𝑢𝑢 = 𝑛𝑛
𝑖𝑖 𝑢𝑢𝑖𝑖 1 − 𝑢𝑢 𝑛𝑛−𝑖𝑖

• n: degree, usually 2 (quadratic) or 3 (cubic)
• n control points

• 𝐶𝐶 𝑢𝑢 = ∑𝑖𝑖=0..3 𝐵𝐵𝑖𝑖3(𝑢𝑢) 𝐶𝐶𝑖𝑖

• Bases sum to one →
convex combination of control points
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Bezier Curves

• More control points → higher degree → less 
stable

• To handle longer curves, Bezier curves can be 
joined

• Simple conditions on control points to get 
smooth curves at joins
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Bezier Curves

• More control points → higher degree → less 
stable

• To handle longer curves, Bezier curves can be 
joined

• Simple conditions on control points to get 
smooth curves at joins
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B-Splines

• Alternative polynomial basis: B-Spline-basis
• Degree: usually 2 or 3

• Number of control points independent of degree

• Definition uniform B-Spline

• 𝑁𝑁𝑖𝑖0 𝑢𝑢 = �1 ↔ 𝑖𝑖 ≤ 𝑢𝑢 < 𝑖𝑖 + 1
0 else

• 𝑁𝑁𝑖𝑖𝑘𝑘 𝑢𝑢 = 𝑢𝑢−𝑖𝑖
𝑘𝑘
𝑁𝑁𝑖𝑖𝑘𝑘−1 𝑢𝑢 + 𝑖𝑖+1−𝑢𝑢

𝑘𝑘
𝑁𝑁𝑖𝑖+1𝑘𝑘−1(𝑢𝑢)
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Demo Polynomial Curves
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From Curves to Surfaces

• 2D curves → 3D surfaces: Tensor product approach
• (in AlgoKS you heard about alternative approach of Coons Patches)

• 𝑚𝑚 × 𝑛𝑛 control points
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B-Spline Surfaces

• 𝑚𝑚 × 𝑛𝑛 control points = 𝑚𝑚 control polygons with 𝑛𝑛 points each

• evaluate surface at parameter value (𝑢𝑢, 𝑣𝑣):
• evaluate each of the m curves at parameter 𝑢𝑢

→ new control polygon with 𝑛𝑛 points
• evaluate this curve at parameter 𝑣𝑣

19

𝑢𝑢

𝑣𝑣
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NURBS Surfaces in Blender

• NURBS surface in blender (NURBS are a variant of Bsplines)
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NURBS Surfaces in Blender

• NURBS surface in blender: after modification of control points

Computer Graphics 2020/21 – Modeling and Scene Graphs 21



Subdivision Surfaces

• Subdivision: Simple rules to subdivide control polygon, such that new 
control polygon generates the same curve

• Example: subdivision rule for uniform cubic B-Splines:
for each edge of the control polygon, set two control points at ¼ and ¾ of the 
edge

→ “corner cutting”

• When iterating subdivision, control polygon converges to curve
→ fastest approach to generate curves

Computer Graphics 2020/21 – Modeling and Scene Graphs 22



Subdivision Surfaces

• Tensor Product B-Spline Subdivison:
Perform curve subdivision row-wise and column-wise alternating
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Subdivision Surfaces

• Idea:
• user edits some coarse mesh
• do some subdivision steps
• → control mesh gets finer and converges to smooth  surface

• Model coarse mesh, make smooth by subdivision
→ “Subdivision Surfaces”

• Problem:
• subdivision as described before requires rectangular topology…
• for the cubic case: each vertex should have four surrounding quads

• Subdivision Surfaces extend subdivision rules to arbitrary topology
→ critical: irregular vertices with valence != 4

• Example: Catmull-Clark
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Subdivision Surfaces

• Catmull-Clark rules:
given some mesh of quads

• first, add face points:
average of face’s vertices
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Subdivision Surfaces

• Catmull-Clark rules:
given some mesh of quads

• first, add face points:
average of face’s vertices

• second, add edge points:
average of edge’s vertices
and face points
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Subdivision Surfaces

• Catmull-Clark rules:
given some mesh of quads

• first, add face points:
average of face’s vertices

• second, add edge points:
average of edge’s vertices
and face points

• finally, move original points:
weighted average of
neighbors, edge points,
and face points
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Subdivision Surfaces

• Catmull-Clark Subdivision

Computer Graphics 2020/21 – Modeling and Scene Graphs 28

Geri’s game, Pixar



Subdivision Surfaces

• Example from blender: coarse Monkey object
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Subdivision Surfaces

• Example from blender: After two subdivision steps
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Subdivision Surfaces

• Example from blender: After two subdivision steps, with smooth shading
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Tessellation / Subdivision

• General Idea:
• store coarse model only
• maybe animate this coarse model
• make subdivision / tessellation just before rendering

• Many variants of free-form surfaces and subdivision schemes
→ lecture “Geometric Modeling”

• Also in interactive graphics: Hardware Tessellation
• Upload coarse model to GPU
• GPU then does the subdivision at render time
• requires new shader types Geometry Shader, Tessellation Shader, Mesh Shader
• → lecture “Interactive Computer Graphics”

Computer Graphics 2020/21 – Modeling and Scene Graphs 32



Scene Graphs

• Until now, we considered single objects
• But scenes consists of multiple objects, that can maybe move, share 

shaders, share textures etc.

• All this is modelled in a SceneGraph
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Scene Graphs

• remember from Lecture #1
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• More complex example: model of mensa scene
• Walls, floor, ceiling, windows

• 10 rows of tables
• Every table row: 8 groups of tables and 10 chairs

• ⇒ Scene tree

35

Scene Graphs

mensa

walls floor ceiling table row 1 table row 10

table group 1.1 table group 1.8

table 1.1 chair 1.1.1 chair 1.1.10…

…

… … …

… …

…………
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• leaf nodes table and chair all have same geometry 

• Just transformations of leaf nodes differ ⇒ scene graphs share these 
common geometries

36

Hierarchical Modeling

Transformation node
• transformation + 

list of children

Group node:
• list of children
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mensa

walls floor ceiling
table row 1 table row 10

table chair 1 chair 10…

table group

…

chair

table row

table group 1 table group 10…



Scenes

• Scene stored in Scene Graph
→ on the CPU
→ Hierarchical Modelling

• Scene graph traversal
→ updates scene objects, animates, simulates, …
→ generates scene object triangle meshes

plus their modeling transformation
plus materials, plus textures…

→ handles upload of geometry to GPU, resorting etc.
→ generates OpenGL drawcalls
→ makes rendering optimizations, e.g. culling, sorting, …
→ adds nice effects: shadows, fog, depth of field, …
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• Organization of scene

38

Hierarchical Modeling
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• Simple Example in scene format VRML with Groups

39

Hierarchical Modeling

Group {  
numObjects 3
Group {

numObjects 3
Box { <BOX PARAMS> }
Box { <BOX PARAMS> }
Box { <BOX PARAMS> }}

Group {
numObjects 2
Group {

Box { <BOX PARAMS> }
Box { <BOX PARAMS> }
Box { <BOX PARAMS> }}

Group {
Box { <BOX PARAMS> }
Sphere { <SPHERE PARAMS> }
Sphere { <SPHERE PARAMS> }}}

Plane { <PLANE PARAMS> }}
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• Adding Transformations

40

Hierarchical Modeling

Computer Graphics 2020/21 – Modeling and Scene Graphs



• Transform nodes to position the logical                                                       
groupings of objects                                                          within the scene

41

Hierarchical Modeling
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Hierarchical Modeling
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Group {  
numObjects 3
Transform {

ZRotate { 45 }
Group {

numObjects 3
Box { <BOX PARAMS> }
Box { <BOX PARAMS> }
Box { <BOX PARAMS> } } }

Transform { 
Translate { -2 0 0 }
Group {

numObjects 2
Group {

Box { <BOX PARAMS> }
Box { <BOX PARAMS> }
Box { <BOX PARAMS> } }

Group {
Box { <BOX PARAMS> }
Sphere { <SPHERE PARAMS> }
Sphere { <SPHERE PARAMS> } } } }

Plane { <PLANE PARAMS> } }



• Rendering this graph is done using a depth traversal of the graph
• There is always one current material, one current matrix, etc.

• Matrices are efficiently cumulated using a Matrix Stack

• Matrix stack
• stack of 4 x 4 matrices
• Push (matrix m)

• Duplicate top matrix
• Apply m to top matrix

• Pop ()
• Remove top matrix

43

Hierarchical Modeling

M1 M2 M3 M3·m

M1 M2 M3

M1 M2 M3

M1 M2

push(m)

pop()
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Hierarchical Modeling

• Handling transformations using matrix stack
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class Node { ... }

class TransformNode extends Node {
Transformation t;
void render(MatrixStack stack) {

stack.push(t);
for (each child i)

i.render(stack);
stack.pop();

}   }

class Object extends Node {
void render(MatrixStack stack) {

render Object with modeling matrix stack.top();
}   }



Group {  
numObjects 3
Group {

numObjects 3
Box { <BOX PARAMS> }
Box { <BOX PARAMS> }
Box { <BOX PARAMS> } }

Group {
numObjects 2
Group {

Box { <BOX PARAMS> }
Box { <BOX PARAMS> }
Box { <BOX PARAMS> } }

Group {
Box { <BOX PARAMS> }
Sphere { <SPHERE PARAMS> }
Sphere { <SPHERE PARAMS> } } }

Plane { <PLANE PARAMS> } }

• Adding Materials

45

Hierarchical Modeling
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Hierarchical Modeling
Group {  

numObjects 3
Material { <BLUE> }
Group {

numObjects 3
Box { <BOX PARAMS> }
Box { <BOX PARAMS> }
Box { <BOX PARAMS> } }

Group {
numObjects 2
Material { <BROWN> }
Group {

Box { <BOX PARAMS> }
Box { <BOX PARAMS> }
Box { <BOX PARAMS> } }

Group {
Material { <GREEN> }
Box { <BOX PARAMS> }
Material { <RED> }
Sphere { <SPHERE PARAMS> }
Material { <ORANGE> }
Sphere { <SPHERE PARAMS> } } }
Material { <BLACK> }

Plane { <PLANE PARAMS> } }Computer Graphics 2020/21 – Modeling and Scene Graphs

multiple materials per group
→ affects “following” nodes



Hierarchical Modeling

• Handles using current material
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class Node { ... }

class Context { Material currentMaterial; MatrixStack stack; ... }

class MaterialNode extends Node {
Material M;
void render(Context c) {

c.currentMaterial = M;
}   }

class Object extends Node {
void render(Context c) {

render Object with material c.currentMaterial and matrix c.stack.top();
}   }



Scene Graphs

Scene Graphs…
• are a data structure for hierarchical modeling

• also store informations such as lights, cameras, textures, …

• can also be used for other optimizations
• Shader sorting
• View frustum culling
• …
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Scene Graphs - Sorting

• Shader / Material / Texture Sorting:
Switching shaders, material, or textures is often rather expensive

• One possible option for optimization:
Resort tree, so that such switches are reduced

• Strongly depends on target hardware, but large performance gains possible
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Scene Graphs - View Frustum Culling

• View frustum culling:
For every node in the tree,
store a bounding box
with the minimum and
maximum 𝑥𝑥,𝑦𝑦, 𝑧𝑧 values

• At render time, test this box
against view frustum

• if box is completely outside
view frustum, we can skip the
entire subtree
→ view frustum culling

• if box is completely inside, we can
skip tests for children and always
have to render

• Also works on hierarchy of bounding boxes
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Scene Graphs – Occlusion Culling

• Occlusion culling:
Avoid rendering of objects that
are within the view frustum,
but completely hidden by
objects in front
→ far more difficult

• One first, simple variant:
• hierarchical z-Buffer
• implemented on good GPUs
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tree withing view
frustum, but
hidden by wall



Occlusion Culling: Hierarchical z-Buffer

• store hierarchical version of z-Buffer
• Level 0: z-Buffer

• coarser levels: maximum z-value of children

1 2
7 3

7
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Occlusion Culling: Hierarchical z-Buffer

• when rendering an object
• project bounding box
• determine level of hierarchial z-buffer with

corresponding size
• examine (max. 4) nodes of hierarchical z-buffer

that cover object
• if all z-values smaller than that of bounding box

→ object hidden
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Occlusion Culling: Hierarchical z-Buffer

• hierarchical z-Buffer
• must keep hierarchy consistent
• if a value in depth-buffer is to

be changed, propagate upwards

• supported by new GPUs

1 2
3 7

7 7

21 3

21

1 2
3 5

5 7

21 3

21
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Scene Graphs: Occlusion Culling

• hierarchical z-Buffer
• works best, if scene is rendered from front to back

• Optimization by Scene Graph
• during render traversal: traverse nodes (roughly) front to back
• can conflict with shader / texture sorting…
• more sophisticated occlusion culling approaches possible:

Portals / occlusion queries / …
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Occlusion Queries

• OpenGL occlusion test
• special render mode:

• render nothing, but count number of pixels set (for each object)

• occlusion culling:
• per object:

• set counter to zero
• render bounding box in OccCull-mode
• render object only, if counter > 0
• or, more sloppy: render object only if counter > small n
• or: render simplified object if counter small
• or: …

extra slides
not relevant for exam
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Occlusion Queries

• OpenGL occlusion culling
• very general, very simple
• ideally: scene should be rendered from front to back
• disadvantage:

• the test stalls the pipeline
• depth sorting is unwanted overhead on tile-based deffered rendering
• a test can be expensive as thousands of triangles!

bbox test draw bbox test draw

stall stall

extra slides
not relevant for exam
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Occlusion Queries

• optimization:
• several counters
• activate counters by commands that don‘t stall pipeline
• one can ask (asynchronous) whether result for a single counter is available

→ if not, continue with next nodes
→ hide latency

• or query all counters at once → only one pipeline stall
• select counter 1, render bbox 1
• select counter 2, render bbox 2
• …
• get counters
• if (counter 1 > 0) render object 1
• if (counter 2 > 0) render object 2
• …

extra slides
not relevant for exam
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Occlusion Queries

• several counters, only one stall

bbox
counter 1

bbox
counter 2

draw 1

bbox
counter 3

draw 2 draw 3

…

…

get
counters

stall

extra slides
not relevant for exam
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Coherent Hierarchical Culling

• Bittner et al.: Coherent Hierarchical Culling: Hardware Occlusion Queries Made 
Useful, EUROGRAPHICS 2004

• Observation: culling results are coherent, i.e. they likely don‘t change over frames
• previously hidden objects probably remain invisible
• previously visible objects are probably visible again

• → Optimization:
• previously invisible nodes:

• start occlusion query
• if query results in „visible“: mark as visible and render

• previously visible nodes:
• render immediately
• confirm visibility by new query

• integration with hierarchy traversal necessary

extra slides
not relevant for exam
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Coherent Hierarchical Culling

• Previously visible nodes:
• inner nodes → continue with children
• leaves → render immediately and start occlusion query

• Previously invisible nodes:
• start occlusion query (with bbox)

• When an occlusion query result arrives
• if object visible

• set visibility flag
• if node was previously visible

→ done
• if node was previously invisible

→ inner nodes: traverse children
→ leaves: render

• else
• clear visibility flag

extra slides
not relevant for exam
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Coherent Hierarchical Culling

• V,I: visibile, invisible nodes
• termination nodes: traversal ends here

• pull up/down: propagate visibility information

• solid circles: visibility query done

frame i frame i+1

extra slides
not relevant for exam
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Scene Graphs

• Scene Graphs – often also called Render Engines (with a scene graph as main 
data structure)

• Several of these are available, e.g.
• very old: OpenInventor
• newer ones: OpenSceneGraph, OpenSG, …
• state-of-the-art: Unreal Engine, Unity
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Next Lecture

• Virtual Reality
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