Lecture #15

Ray Tracing - Basics

Computer Graphics
Winter Term 2020/21

Marc Stamminger / Roberto Grosso



Introduction

* Up to now: Rasterization
e Scanline algorithm to enumerate hit pixels
* Local illumination using Phong lighting
* Occlusion using depth buffer

* Ray Tracing:
A different rendering paradigm
* More illumination effects - Global lllumination
e Physically motivated illumination computations



Up to now: Rasterization

for each triangle t

find pixels inside t
shade pixel

NN

AN
[~ N

~ N\
\\ \\\

\\\

] :;iiiliki‘l
L — ’/’
/

Computer Graphics 2020/21 - Ray Tracing Basics



Ray Casting

* Ray Casting c Ray Tracing

for each pixel p

cast a ray through pixel p
shade p

= “find scene
point visible in p”

] /] /

/

\

\

Computer Graphics 2020/21 - Ray Tracing Basics



Ray Casting - Ray Tracing

* Having a method at hand that intersects a ray with our scene, we use this to

generate new lighting effects that are not directly possible with rasterization
- reflections

— refractions
—> shadows

— indirect illumination (later)



Ray Tracing
eye rays
* Ray Casting - Ray Tracing

shadow rays

reflection rays

refraction rays

"W, 7,7/

J
il

\ [ |/ / / /

\
\

\

\

\
\
\\

\

Computer Graphics 2020/21 - Ray Tracing Basics



Introduction

* 1968: Ray Casting: Arthur Appel
* 1979: Recursive ray tracing: Turner Whitted

reflection
and

refraction Images by Turner Whitted

Computer Graphics 2020/21 - Ray Tracing Basics



Introduction

Image by Henrik Wann Jensen. He writes: One of my first ray tracing images (1990-1991).
Rendered first time on an Amiga in HAM mode (the good old days).

Computer Graphics 2020/21 - Ray Tracing Basics



Introduction

 Car with reflections, refractions, environment lighting

Computer Graphics 2020/21 - Ray Tracing Basics



Introduction

* Indirect lllumination - not possible with simple ray tracing

Computer Graphics 2020/21 - Ray Tracing Basics

10



Introduction

 Caustics: light patterns generated by reflections off specular surfaces
— not possible with simple ray tracing

graphics.ucsd.edu https://blenderartists.org/forum/showthread.php?116585-
Realistic-underwater-lighting-and-caustics-added-tutorial-link

* more in the lecture “Global lllumination”, next summer term

Computer Graphics 2020/21 - Ray Tracing Basics

11



Ray Tracing

» Today: Basics of Ray Tracing
* how to generate eye rays
* how to intersect a ray with scene geometry
* a first ray caster

* Next Lectures:
* how to generate secondary rays
* recursive ray tracing procedure
 accelerations structures for fast ray tracing
* special effects possible with ray tracing



Rays

* Mathematical representation of
an (eye) ray
* Parametric line from ray origin (eye)

e in direction d
p(t) =e+td

*p0) = e
* 0<t; < t,=p(t;)closerto the
eye than p(t,)

*t < 0 = p(t) behind the eye

* Ray test:

* find intersection of ray with scene
with smallestt > 0

Computer Graphics 2020/21 - Ray Tracing Basics

Y A4
N,/ /
77/
//‘I//////

[

/
[

|

\

| —

| VARV 4

\ || L 7

13



Eye Ray Generation

* Every eye ray belongs to one pixel
« Starting point of eye ray: camera

* Eye ray goes through pixel on
image plane

* For a particular pixel p, the eye ray is:
e = camera position

d=@-e)|lp—ell

* Intersection with objects:
gather t-values witht > 0
* Smallest t = first intersection = visible object

14

Computer Graphics 2020/21 - Ray Tracing Basics



Eye Ray Generation

 Remember from Lecture #07: Viewing and Perspective
Given camera position, view direction and up-vector
—> compute camera basis vectors u, v,w

t
camera
@g\l -

camera

1%

u

* Use this to generate an image plane:

e+w+xu+yv

Computer Graphics 2020/21 - Ray Tracing Basics

15



Eye Ray Generation

* Point (x,y) on image plane:
e+ w+xu+yv

* Using the field of view fovy and aspect ratio aspect,
a window is defined on the image plane:

(x: Y) € [_xmr xm] X [_ym' ym]
fovy

with y,,, = tan—-=, X, = aspect ym,
* Finally, we map integer pixel coordinates (i, j)
to this window:

i+0.5
X = ( - X 2 — 1)xm, y analog

Y \ number of

relative pixels in x
coordinate

Computer Graphics 2020/21 - Ray Tracing Basics

16



Eye Ray Generation

* Eye ray computation:
* compute (u, v, w) for camera frame
* for pixel (i,j): eye ray is e + td with

e = camera position

[+0.5
X = (Hr X 2 — 1) X aspect X tanfo% and

Ny
'+ 0.5 ov
y=<] ><2—1>><tanf 24
ny 2

w + Xu + yv

w4 xu + yu||

* Corresponds to pinhole camera with planar projection plane



Eye Rays: Other Camera Models

* In ray tracing, we can easily handle camera types other than projective
pinhole cameras, e.g. panoramic cameras, fish eye lenses, or similar

* Example: panoramic camera

 eye rays through grid on
surrounding cylinder

By Nickj (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0) or GFDL
(http://www.gnu.org/copyleft/fdl.html)], via Wikimedia Commons

Computer Graphics 2020/21 - Ray Tracing Basics 18


https://commons.wikimedia.org/wiki/File:Bundeena-pier-360-panorama-NSW-Australia.jpg

Eye Rays: Other Camera Models

e Kolb et al.: “A Realistic Camera Model for Computer Graphics”

e Simulate entire lens system to mimic real cinematic lenses

35mm wide angle 50mm

16mm fish eye 200mm tele

Computer Graphics 2020/21 - Ray Tracing Basics 19


https://dl.acm.org/citation.cfm?id=218463

Eye Rays: Antialiasing

* Simple Anti-Aliasing: shoot multiple eye rays through pixel

* jitter eye rays over pixel
— smoothing of edges
— multiple texture samples
— high impact on performance



Eye Rays: Antialiasing

* Sample patterns

Computer Graphics 2020/21 - Ray Tracing Basics

21



Eye Rays: Adaptive Sampling

* Adaptive Sampling:
try to reduce number of eye rays

’ : i View point /
— don’t cast multiple rays per pixel, . %______—;—_

if color in pixel uniform

— Primary rays:

Pixel to

° Cast eye rays th rough plXEl grld o Sample locations for pixel: vender
corners

* if color for one pixel vary strongly (by more than a threshold), subdivide
corresponding cells and cast additional rays

* stop for tiny subpixels

 average results for each pixel



Eye Rays: Depth of Field

* Real-world lenses have a focus plane

* Objects out of this plane get blurry

*=dist in focus f-22. *=gdist in focus -3.5 *=dist in focus

* We can also simulate Depth of Field by jittering eye rays

Computer Graphics 2020/21 - Ray Tracing Basics

[Jason Waltman / jasonwaltman.com]

23



Eye Rays: Depth of Field

* For each pixel, cast multiple rays,
jitter starting point of ray around optical center (= pinhole)

* all rays of one pixel must intersect at focus plane

e average over rays per pixel - depth of field effect

.\v — a2

focus plane

[Jason Waltman / jasonwaltman.com]

*=dist in focus

Computer Graphics 2020/21 - Ray Tracing Basics 24



Ray — Object Intersection

* Does a given ray e + td intersect a scene object ?
And if so, where and at which ray parameter t ?

* Today we look at triangles,
polygons, and spheres

Computer Graphics 2020/21 - Ray Tracing Basics 25



Ray — Object Intersection

* Planes and plane equations

* Normal of a plane through points A4, B, C
n=(B-4)x({C-A4)/lI(B-4)x({C-Al

* plane equation, point-normal form
no(x—A4)=0

* constant-normal form
nox=s (=necA=noB=no()

* s is the distance of the plane to the origin




Ray - Plane intersection

* Parametric representation of a ray
p(t) =e+td|d|l =1

* Plane equation
nox=s:s

S—noe

>nop(t)=s->t= >qg=e+td

nod

* Notes:
 ifnod = 0, the ray is parallel to the plane

e if t < 0, the intersection is “behind” the starting
point e




Ray - Triangle intersection

* First intersect with plane supported by triangle, then check whether
intersection point is inside triangle

* Many algorithms exist for this problem

» Simple approach: use barycentric coordinates to describe intersection point

 System of equations:
e+td=a+pLb—-—a)+y(c—a)

(barycentric coordinate a replaced by 1 — f — y)

* Unknowns: t, 5,y

* Intersectionatg = e + td if
* t > 0 (g on positive part of ray) u A
b

«=20,y=20, a=>0 ¢« +y <1(q within triangle)




Ray - Triangle Intersection

*Solvee+td=a+ b —a)+y(c—a):

(£ e o)l

A




Ray - Triangle intersection

 Solve using Cramer’s rule:

°t=det<a—e a—b>b a—c)/detA
°,8=det<d a—e a—c)/detA

°y=det<d a—b>b a—e)/detA

e Ifdet4A = 0, then

* The triangle is degenerate (a line or a point) or
* The ray is parallel to the triangle



Ray - Triangle intersection

Boolean raytri (ray r, point3 a, point3 b, point3 c,
interval[tO0,tl])
compute t
if (t < t0) or (t > tl) then
return false
compute det (A)
if det(A) == 0 // border case. no intersection
return false
compute y
if (y < 0) or (y > 1) then
return false
compute B
if (B < 0) or (B > 1) then
return false
if (B + y >1) then
return false
else
return true




Ray - Triangle intersection

* Optimized implementation:
* first, use det(a,b,c) =ao(bXc)=bo(cXa)=co(axXb)
* SO in our case:

e normaln=(b—a) X (c—a) (not normalized)
* detA=don
. t = det(a—e,a-b,a-c) _ (a—e)on
B det A "~ detA
. ,8 __det(d,a—e,a—c) _ (a—c)o(dx(a—e))
B det A B det A
_ det(da-ba-e) _ (a—b)e(dx(a—e))

det 4 det 4



Ray - Triangle intersection

* These optimizations are used in the following code

* Note: ray is parameterized by two points (p,q),soe =pandd =q —p

// Given ray pgq and triangle abc, returns whether ray intersects
// triangle and if so, also returns the barycentric coordinates (u,v,w)
// of the intersection point
int IntersectSegmentTriangle (Point p, Point q, Point a, Point b, Point c,
float &u, float &v, float &w, float &t)
{
Vector ab = b - a;
Vector ac c - a;
Vector qp = p - q;

// Compute triangle normal. Can be precalculated or cached if
// intersecting multiple segments against the same triangle
Vector n = Cross(ab, ac);

// Compute denominator d.
float d = Dot(gp, n);

// If d == 0, ray is parallel to triangle or triangle is degenerate
if (fabs(d) < le-10) return O;




Ray - Triangle intersection

// Compute intersection t value of pg with plane of triangle.
// A ray intersects iff 0 <= t.

// Delay dividing by d until intersection has been found
Vector ap = p - a;

t = Dot(ap, n);

if (t < 0.0f) return O;

// Compute barycentric coordinate components and test if within bounds
Vector e = Cross(gp, ap):
v = Dot(ac, e);

if (v< 0.0f || v > d) return O;
w = -Dot(ab, e);
if W< 0.0f || v+ w > d) return O;

// Segment/ray intersects triangle. Perform delayed division and
// compute the last barycentric coordinate component

float ood = 1.0f / d;

t *= ood;

v *= ood;

w *= ood;

u=1.0f - v - w;

return 1;




Ray - Triangle intersection

* Interpretation of ray-triangle intersection test [Moller,Trumbore]

* Transform to new coordinate system (described by matrix A) from two
triangle edges and ray direction

*thent =e,, B =by,y =c¢y

0=V, b,

¥

Computer Graphics 2020/21 - Ray Tracing Basics 35


https://en.wikipedia.org/wiki/M%C3%B6ller%E2%80%93Trumbore_intersection_algorithm

Ray — Polygon Intersection

* Given a planar polygon with
* m vertices p, through p_,
e All on a plane with normal n

1. compute intersection p of ray with the plane containing the polygon

2. testif p is within the polygon



Ray — Polygon Intersection

1. Ray Polygon Intersection

 Raye + td

e Compute intersection with plane containing polygon
(p1—e)o nd

=e+
p=¢e don

2. Testif plies in polygon

e Simple solution:
Project polygon and p onto the coordinate plane with the largest projection.

* Then do 2D inside-outside test

rayl ray2

In this example, we project the triangle
on to the xy-plane because the normal

‘ )’OD has maximal component in z

Z



Ray — Polygon Intersection

* Two different cases:
* Polygon is convex = simple edge tests possible
* Polygon is non-convex - more complicated in/out test needed



Ray — Polygon Intersection

* Convex polytopes (polyhedra)

* A polyhedron (convex polygon in 2D) can be described as the intersection of a set of
half spaces

e a point x is inside the polyhedron, if it is within all the half spaces
nyex—d; >0
ny,ox—d, >0
nyox—dsz >0

* = Lecture “Rasterization”

* Inside — Outside test for convex polygons
» convert edges to half space representation

* check point for all half spaces
—> as soon as one fails, point is outside
— if none fails, point is inside

* ideally: half space vectors stored with triangle
— fast, but consumes memory



Ray — Polygon Intersection

* For non-convex polygons, the previous test is not correct
- example ?

* General polygon inside-outside test
* Generate ray from point in arbitrary direction
e Count intersections with polygon boundary

* Even - outside o
* Odd = inside



Ray — Polygon Intersection

* Polygon inside-outside test

* Problem: ray hits one vertex
- should it count twice or once?

* in the example on the right, the upper
ray should count two intersections,
the lower one only one...

e Simple robust solution:
If such a boundary case is detected,
use other ray with new direction



Ray — Sphere Intersection

* Implicit surface equation f(x) = 0
* Example: sphere with center ¢ and radius 7:
(x—c)o(x—c)—1%=0
* Set the ray in the implicit equation and find t and the intersection point p, if

possible
f(p(t)) = 0 = ray parameter ¢



Ray — Sphere Intersection

* Intersection with ray p(t) = e + td:
(e+td—c)o(e+td—c)—1%=0

* Results in quadratic equation
(dod)t?+2do(e—c)t+(e—c)o(e—c)—1%2=0

*Since(dod) =1:

_ —bxVb%—4c
B 2

withb =2do(e—c)andc=(e—c)o(e—c)—r?

t



Ray — Sphere Intersection

* Meaning of the discriminant b* — 4c
* If negative = no intersection
* If positive - two intersections

* where ray enters the sphere

* where ray leaves the sphere

* If zero - ray touches sphere at exactly one point

* Always check discriminant first!

* sphere-ray intersection very fast: discriminant alone tells us, whether there

is an intersection
— use sphere as bounding object for more complex objects



Other Intersection Tests

* Similar tests available for
* ellipsoids
* cylinders
* cones
* tori
* boxes



Ray Casting
* Up to now, we have the following:

for each pixel p in image plane

generate eye ray (e,d) through pixel p ‘
tmin = infinity; omin = null;
L [ust e

for each scene object o
t = intersect ray (e,d) with object o
if ray intersects object and t < tmin
tmin = t;
omin = o;

if omin != null
compute lighting at hit point on object omin‘
set p to this color

else
set p to background color

Computer Graphics 2020/21 - Ray Tracing Basics

46



Ray Casting - Lighting

* How to do the lighting at a found hit point?
- we need the hit point, its surface normal, maybe texture coordinates etc.
* For a triangle, these can be interpolated from the vertices

* Typically, this information is stored in a Hit-Object

struct Hit {
float t; // ray parameter
Obj *obj; // hit scene object
float alpha,beta,gamma; // barycentric coordinates

vec3 getPosition() { .. }
vec3 getNormal() { .. }
vec2 getTexCoord() { .. }

}

Hit Scene::intersect(Ray &ray) { .. }




Ray Casting - Lighting

°* new version

for each pixel p in image plane
Ray ray = camera->getEyeRay(p);
Hit closestHit = null;
for each scene object o
Hit hit = o.intersect(ray);
if closestHit == null || hit.t < closestHit.t
closestHit = hit;
if closestHit != null
c = closestHit.obj.shader.computeLighting(
closestHit.getPos(),
closestHit.getNormal(),
)
setPixelColor(p,c);
else
setPixelColor(p,backgroundColor);




Ray Casting

* Up to now, we generate exactly the same images as with a rasterizer...

* But with much more effort:
* n: number of objects (millions)
* m: number of pixels (millions)
* Intersecting one ray with all objects is O(n)
Generating the image is then O(mn) > impractical
e compare: rasterizer is O(m + n) (for constant depth complexity)

* Next lectures:
* how we can simulate new nice effects with ray tracing
* how we can compute ray intersections in O(logn) ?



	Lecture #15��Ray Tracing - Basics
	Introduction
	Up to now: Rasterization
	Ray Casting
	Ray Casting → Ray Tracing
	Ray Tracing
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Ray Tracing
	Rays
	Eye Ray Generation
	Eye Ray Generation
	Eye Ray Generation
	Eye Ray Generation
	Eye Rays: Other Camera Models
	Eye Rays: Other Camera Models
	Eye Rays: Antialiasing
	Eye Rays: Antialiasing
	Eye Rays: Adaptive Sampling
	Eye Rays: Depth of Field
	Eye Rays: Depth of Field
	Ray – Object Intersection
	Ray – Object Intersection
	Ray - Plane intersection
	Ray - Triangle intersection
	Ray - Triangle Intersection
	Ray - Triangle intersection
	Ray - Triangle intersection
	Ray - Triangle intersection
	Ray - Triangle intersection
	Ray - Triangle intersection
	Ray - Triangle intersection
	Ray – Polygon Intersection
	Ray – Polygon Intersection
	Ray – Polygon Intersection
	Ray – Polygon Intersection
	Ray – Polygon Intersection
	Ray – Polygon Intersection
	Ray – Sphere Intersection
	Ray – Sphere Intersection
	Ray – Sphere Intersection
	Other Intersection Tests
	Ray Casting
	Ray Casting - Lighting
	Ray Casting - Lighting
	Ray Casting

