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• Due to perspective, a texture can get magnified and minified
• In both cases, aliasing can appear:

• magnification reveals pixels
• minification results in weird patterns

• In this lecture, we will look at both cases
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Texture Interpolation and Texture Aliasing

magnification

minification
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• Up to now
• for each pixel, we interpolate texture coordinates → (𝑠𝑠, 𝑡𝑡)
• fragment shader reads pixel at this position and uses this color

• But: how to map (𝑠𝑠, 𝑡𝑡) to corresponding texture value?
• Issue #1: how to handle coordinates outside [0,1] ?
• Issue #2: how to handle coordinates between pixel centers ?
• Issue #3: how to handle texture minification and resulting aliasing artifacts
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Texture Mapping
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Texture Mapping

• Coordinates outside [0,1] 

• Clamping: Repeating:
(𝑠𝑠, 𝑡𝑡) −> (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠), 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡)) (𝑠𝑠, 𝑡𝑡) −> (𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑠𝑠),𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑡𝑡))
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥) = max(0, min(1, 𝑥𝑥)) 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑥𝑥) = 𝑥𝑥 – 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑥𝑥)
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• coordinates in between pixel positions → Texture Interpolation
• Two modes:

• Nearest neighbor
• Bilinear interpolation
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Texture Mapping

(s,t)

Texture values

Computer Graphics 2020/21 - Texture Antialiasing



• “Nearest Neighbor”
• Take color of closest texel (texel = pixel in texture)
• 𝑖𝑖 = 𝑠𝑠𝑛𝑛𝑥𝑥 ; 𝑗𝑗 = 𝑡𝑡𝑛𝑛𝑦𝑦 → 𝑐𝑐 𝑠𝑠, 𝑡𝑡 = 𝑐𝑐𝑖𝑖𝑖𝑖;
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Texture Interpolation

2x2-Texture

+ Square 
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• Bilinear interpolation: Color information of image pixel is mixed with 
neighbors, depending on relative distances

• 𝑠𝑠′ = 𝑠𝑠𝑛𝑛𝑥𝑥 − 𝑠𝑠𝑛𝑛𝑥𝑥 ; 𝑡𝑡′ = 𝑡𝑡𝑛𝑛𝑦𝑦 − 𝑡𝑡𝑛𝑛𝑦𝑦
• 𝑐𝑐 𝑠𝑠, 𝑡𝑡 = 1 − 𝑠𝑠′ 1 − 𝑡𝑡′ 𝑐𝑐𝑖𝑖𝑖𝑖 + 𝑠𝑠′ 1 − 𝑡𝑡′ 𝑐𝑐 𝑖𝑖+1 𝑗𝑗 + 1 − 𝑠𝑠′ 𝑡𝑡′𝑐𝑐𝑖𝑖 𝑗𝑗+1 + 𝑠𝑠′𝑡𝑡′𝑐𝑐 𝑖𝑖+1 𝑗𝑗+1
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Texture Interpolation

2x2-Texture

+ Square 
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Texture Interpolation

• Texture 8x8                           nearest neighbor                  bilinear interpolation

• Texture 8x8
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• Effects of nearest neighbor vs. bilinear filtering become visible for texture 
magnification

• Another problem appears for texture minification → Aliasing
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Texture Interpolation

magnification

minification
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Aliasing
Sampling problems:
• missing small objects
• staircase artifacts / jaggies

→ see lecture Rasterization

• appearance of new frequencies 
from texture minification
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• Sampling problem
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Texture Aliasing

ft = fs

ft < fs

ft > fs!

Current scanline Results

√

√

−
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• For now, look at scanlines
• replace checkerboard by

sine wave
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Aliasing
Image samples

Texture signal
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sampling
just fine

sampling
too coarse

→ new
frequencies

near range: fine pixel grid

middle range: pixel grid = texture grid

far range: pixel grid too coarse

sampling
dense

enough

1

1

2

2

3

3

pixel grid



• Fourier analysis can help:
Any function (signal) can be represented as an (infinite) sum of sine 
waves with varying frequencies

• Example 1
for Fourier
analysis

13

Fourier Analysis
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sin(𝑥𝑥)
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3

sin 5𝑥𝑥
5

sin 7𝑥𝑥
7

sin 9𝑥𝑥
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Fourier Analysis

• Fourier Transformation and back
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function 𝑓𝑓(𝑥𝑥) in image space

spectrum 𝐹𝐹(𝜔𝜔) in frequency space

Fourier
Transformation

Inverse
Fourier

Transformation



• Sine function in image space and frequency space

• in our representation, spectrum is symmetric and has negative frequencies
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Fourier Analysis
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Fourier Analysis

• Box function in image space and frequency space
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sin 𝑥𝑥 +
sin 3𝑥𝑥

3 +
sin 5𝑥𝑥

5 + ⋯

omega=5, amplitude=1/5



Fourier Analysis

• Another function in both spaces
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Fourier Analysis

• By filtering high frequencies, we can smooth the function
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“low pass filter”
→ filter that lets low 

frequencies pass



Fourier Analysis

• By filtering high frequencies, we can smooth the function
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Aliasing

• Why does that help to understand Aliasing?
• Look at sampled functions

• Sampling creates copies of the spectrum
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Aliasing

• Why does that help to understand Aliasing?
• Look at sampled functions

• Sampling creates copies of the spectrum
• The finer the sampling, the further apart are the copies
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sampling
frequ.



Aliasing

• bandlimited signal

• if 𝜔𝜔𝐵𝐵 < 1
2
𝜔𝜔𝑆𝑆, we can reconstruct the original signal with a low-pass filter
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Aliasing

• bandlimited signal

• if 𝜔𝜔𝐵𝐵 > 1
2
𝜔𝜔𝑆𝑆, we can no longer reconstruct the original signal
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Aliasing

• If sampling is too coarse, high frequencies
of our signal mix with those of the copies.

• We cannot separate these anymore
with a low-pass filter

• This is the reason for aliasing

• Different perspective:
• given a sampling frequency 𝜔𝜔𝑆𝑆
• we band-limit our signal with a low-pass filter with threshold 1

2
𝜔𝜔𝑆𝑆

→ signal gets smoothed, but still contains general structure
→ aliasing is avoided
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ω

|X(ω)|

contributions from
spectrum on the right

→ appear as new frequencies

filtered out
frequencies



Aliasing

• Remember: cutting off high frequencies means smoothing

• How can we realize such a low-pass filter ?

→ image filtering
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Image Filtering

• For each pixel p
• replace color of p by the weighted average of its neighbors
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Image Filtering

• For each pixel p
• replace color of p by the weighted average of its neighbors
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Image Filtering

• For each pixel p
• replace color of p by the weighted average of its neighbors
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Image Filtering

• Filter described by filter kernel or filter mask 𝑘𝑘𝑖𝑖,𝑗𝑗:

𝑓𝑓′ 𝑝𝑝 = �
(𝑖𝑖,𝑗𝑗)∈ −𝑛𝑛…𝑛𝑛 2

𝑘𝑘𝑖𝑖,𝑗𝑗 ⋅ 𝑓𝑓(𝑝𝑝 + 𝑖𝑖, 𝑗𝑗 )

• Examples:

3x3 Box filter                                                    3x3 tent filter
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Aliasing

• Box filter / low pass filter in frequency space

= filtering with kernel function

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥 =
sin 𝑥𝑥
𝑥𝑥

in image space

• But: 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 has infinite support → Value of a pixel depends on entire image!

• More practical alternative: Gauß-Filter with finite support
• cut off at certain radius → finite support
• corresponds to multiplication with a Gauß in frequency space

→ Gauß approximates box of low-pass filter
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https://en.wikipedia.org/wiki/File:Sinc
_function_(normalized).svg



Image Filtering

• Good choice to blur image: Gauß Filter (cut off at certain distance)
• width can be varied with 𝜎𝜎
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0.003   0.013   0.022   0.013   0.003
0.013   0.059   0.097   0.059   0.013
0.022   0.097   0.159   0.097   0.022
0.013   0.059   0.097   0.059   0.013
0.003   0.013   0.022   0.013   0.003

5 x 5, σ = 1

x

y



• But with textures, the relation of texture resolution to screen resolution is 
not known in advance, and varies over the image…

• Solution: Mip-Mapping
• Generate a hierarchy of lower-resolution textures from original texture

→ each texture is a filtered version of the previous one with double filter size
→ hierarchy of prefiltered versions

• Use bilinear interpolation or other integration technique to create textures
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MIP-Mapping
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MIP-Mapping

• How do we generate the low-resolution textures ?

• Simplest solution (for now): Box filter
• average 2x2 pixel blocks to one

Computer Graphics 2020/21 - Texture Antialiasing 33



MIP-Mapping

• How do we generate the low-resolution textures ?

• Simplest solution (for now): Box filter
• average 2x2 pixel blocks to one
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MIP-Mapping

• How do we generate the low-resolution textures ?

• Simplest solution (for now): Box filter
• average 2x2 pixel blocks to one
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MIP-Mapping

• Level 6:  64x64          Level 5: 32x32 Level 4: 16x16   Level 3: 8x8  …
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MIP-Mapping

• Level 3: 8x8 Level 2: 4x4          Level 1: 2x2   Level 0: 1x1
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• How can we determine the appropriate MIPMap-Level ?
• Remember: we are fine as long as a texel is not smaller than a pixel

→ estimate texel size and compare it with pixel size

• At render time for a particular pixel:
• determine 𝑝𝑝 = ratio between pixel and texel size
• MIP-Map-level to choose is then

𝐿𝐿 = log2 𝑝𝑝 + 𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
• 𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 allows user to trade anti-aliasing versus blur:

• MIP-Map-level too coarse → blurring
• MIP-Map-level too fine → aliasing
• optimal choice depends on texture
• usually, 𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 0
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MIP-Mapping
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MIP-Mapping

• Result for infinite plane with 8x8 checkerboard:

• Checkerboard: very difficult example, works much better for other textures
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aliasing remains
(we should adapt bias)

horizon

MIP-Map-levels 0,1,2

hard transition

MIP-Map-level 3



Texture Mapping Demo
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• → at the transition between different levels, a seem gets visible

• → thus, interpolate between levels according to fractional part of 𝐿𝐿
• →”trilinear” interpolation

• Bilinear interpolation at (𝑠𝑠, 𝑡𝑡) in two succeeding textures from the mipmap 
hierarchy, then linear interpolation between these two values
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MIP-Mapping

Texture n+1

Texture n

Value at level n+1

Value at level n

Final value
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• Texture value interpolation
• Trilinear interpolation: Example
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MIP-Mapping
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MIP-Mapping

• In WebGL:

• upload all levels separately, or, simpler:
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if (!texHandle) {
var image = document.getElementById(„mytexture“);
texHandle = gl.createTexture();
gl.bindTexture(gl.TEXTURE_2D,texHandle);
gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA,

gl.UNSIGNED_BYTE, image);
} else

gl.bindTexture(gl.TEXTURE_2D,texHandle);

MIPMap-Level

…
gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA,

gl.UNSIGNED_BYTE, image);
gl.generateMipmap(gl.TEXTURE_2D);
…



MIP-Mapping

• Set modes for magnification and minification:
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…
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER,

gl.LINEAR);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER,

gl.LINEAR_MIPMAP_LINEAR);
…

GL constant Description

gl.NEAREST nearest neighbor

gl.LINEAR linear interpolation

gl.NEAREST_MIPMAP_NEAREST Select nearest mipmap level and 
perform nearest interpolation.

gl.NEAREST_MIPMAP_LINEAR Linear interpolation between mipmap
levels and nearest neighbor filtering

gl.LINEAR_MIPMAP_NEAREST Select nearest mipmap level and 
perform linear filtering

gl.LINEAR_MIPMAP_LINEAR Linear interpolation between levels 
and linear filtering

minification

magnification



Pixel Footprint

• Up to now we transferred ideas from 1D signals to 2D textures
→ additional issues to consider for 2D ?

• consider the pixel footprint in texture space 
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→ screen pixel should show average over
its footprint in texture space

texture grid

footprint of
screen

pixel #1

screen pixel grid

texel #1

texel #2

footprint of
screen

pixel #2

texture
magnif.

texture
minif.

project
pixel corners

to texture
space



Pixel Footprint

• MIP-Mapping:
choose MIP-Map-Level, such that pixel footprint covers one pixel

Computer Graphics 2020/21 - Texture Antialiasing 46

level 2level 3 level 1 level 0

size of footprint vs. texel size



Pixel Footprint

• But what about this case ?

• MIP-Mapping assumes (approximately) square footprints
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level 2level 3 level 1 level 0

fits vertically fits horizontally



Pixel Footprint

• If we look at a texture
under a grazing angle,
the footprint gets
elongated

• If we choose level 0, we get blurring in horizontal direction
• If we choose level 3, we get aliasing in vertical direction
• If we choose level 1 or 2, we get blurring and aliasing
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level0

level 3



Anisotropic Filtering

• non-square pixel footprints → anisotropic filtering

• Solution 1:
Anisotropic MIP-Map

→ contains downfiltered
versions of size [2𝑚𝑚, 2𝑛𝑛]

• 4 times as large as
original texture
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Anisotropic Filtering

Anisotripic MIP-Maps
• work in this case…

• …but not in this case:
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Anisotropic Filtering

• Extend MIP-Maps by rotation? … too expensive …

• Instead, today‘s hardware combines MIP-Mapping (isotropic or anisotropic) 
and sampling:

Evaluate texture at multiple positions
within a pixel, and use MIP-Mapping
for each such sample

• Typical number of samples: 4 or 8
→ many more texture samples
→ expensive

• Choose only, if necessary
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Anisotropic Filtering
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https://en.wikipedia.org/wiki/File:Anisotropic_filtering_en.png



Next Week

• Modeling and Scene Graphs
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