
Lecture #16

Ray Tracing –
Acceleration Structures

Computer Graphics
Winter Term 2020/21

Marc Stamminger / Roberto Grosso

Introduction

• Billions of rays are required to generate high quality images
• Two major components have to be optimized

• Basic primitive tests, e.g. ray-triangle intersection
→ Lecture #15

• strategies and data structures to reduce the number of necessary tests
→ this lecture

2Computer Graphics 2020/21 - Ray Tracing Acceleration

Ray Tracing Complexity

• Plain Ray Casting:

for each of the 𝑚𝑚 pixels

test eye ray against each of the 𝑛𝑛 scene primitives

• 𝑂𝑂(𝑚𝑚𝑛𝑛) is enormous!
• typically 𝑚𝑚, 𝑛𝑛 > 1.000.000
• 1 mio objects, 1 mio pixels → 1 trillion (1012) intersection tests…

• Ray Tracing: > 1.000 secondary rays per pixel common
→ 1015 intersection tests

• But: with acceleration structures the inner loop can be accelerated to
𝑂𝑂(log𝑛𝑛)
→ entire algorithm becomes 𝑂𝑂(𝑚𝑚 log𝑛𝑛) → practical!

Computer Graphics 2020/21 - Ray Tracing Acceleration 3

• Usually, 9X% of the time goes into intersection tests
• Strategies for speeding up ray tracing:

• Restrict intersection tests to objects close to ray
• vice versa: quickly reject large groups of objects that cannot intersect

• Requires a preprocessing step to group objects

• Preprocessing should be lightweight (e.g. 𝑂𝑂 𝑛𝑛 or 𝑂𝑂 𝑛𝑛 log𝑛𝑛) so that it
amortizes

4

Ray Tracing – Acceleration Techniques

Computer Graphics 2020/21 - Ray Tracing Acceleration

• Basis for most acceleration structures:
Bounding volumes (BV):
Find (geometrically simple) surrounding volumes for the complex objects

• Spheres
• bounding boxes

• Before testing all inside objects, check for intersection with BV
→ if BV is not hit, fast trivial reject of all children

• Choose BV such that the intersection test is simple and efficient
• spheres
• axis-aligned boxes
• …

5

Acceleration Techniques

Computer Graphics 2020/21 - Ray Tracing Acceleration
true negative

false positive
true positive

• Bounding volumes (BV) – Intersection test

6

Acceleration Techniques

if (intersect (ray, BV) == true) then
intersect(ray, BV.objects);

end if

Computer Graphics 2020/21 - Ray Tracing Acceleration

Ray – Box Intersection

• A typical BV is an axis aligned box
→ axes of box are aligned to 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧-axis
→ box defined by minimal and maximal 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧-coordinates

• Simple acceleration:
• compute a box surrounding a complex object
• if ray misses this bounding box, no tests with complex object necessary

ray misses box → no intersection

ray hits box, but no intersection with object

ray hits box, intersection with object

Computer Graphics 2020/21 - Ray Tracing Acceleration 7

• AABB: axis aligned bounding box
• box is aligned with the main axes
• Intersection of three slabs 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚,𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚, 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚

8

Ray – AABB Intersection

s2

s1

x

y

n1

n2

Computer Graphics 2020/21 - Ray Tracing Acceleration

Ray – AABB Intersection

• Intersection test
• In 3D a point is inside the AABB if and only if it is inside all the three slabs
• a ray intersects the AABB if and only if the intersection segments of the ray with the

three slabs are overlapping

9

s2

s1

t3

t4
t1

t2

t3

t4

t1

t2

Computer Graphics 2020/21 - Ray Tracing Acceleration

• Intersection test with ray
𝑝𝑝 𝑡𝑡 = 𝑒𝑒 + 𝑡𝑡𝑡𝑡

𝑡𝑡𝑚𝑚 =
𝑡𝑡𝑚𝑚 − 𝑒𝑒 ∘ 𝑛𝑛
𝑡𝑡 ∘ 𝑛𝑛

𝑡𝑡𝑓𝑓 =
𝑡𝑡𝑓𝑓 − 𝑒𝑒 ∘ 𝑛𝑛
𝑡𝑡 ∘ 𝑛𝑛

• Intersection with 𝑠𝑠1 is 𝑡𝑡1, 𝑡𝑡2
Intersection with 𝑠𝑠2 is 𝑡𝑡3, 𝑡𝑡4
→ ray intersects iff 𝑡𝑡1, 𝑡𝑡2 ∩ 𝑡𝑡3, 𝑡𝑡4 ≠ {}

10

Ray – AABB Intersection

s2

s1

t3

t4
t1

t2

t3

t4

t1

t2

Computer Graphics 2020/21 - Ray Tracing Acceleration

11

Ray – AABB Intersection

s2

s1

tymin

tymax

txmin

txmax

𝑡𝑡 ∈ 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡 ∈ 𝑡𝑡𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡 ∈ 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∩ 𝑡𝑡𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑦𝑦 = max 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡𝑒𝑒𝑚𝑚𝑚𝑚𝑒𝑒 = min 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚

Computer Graphics 2020/21 - Ray Tracing Acceleration

12

Ray – AABB Intersection

s2

s1

𝑡𝑡 ∈ 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡 ∈ 𝑡𝑡𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡 ∈ 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∩ 𝑡𝑡𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑦𝑦 = max 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚
𝑡𝑡𝑒𝑒𝑚𝑚𝑚𝑚𝑒𝑒 = min 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑦𝑦 > 𝑡𝑡𝑒𝑒𝑚𝑚𝑚𝑚𝑒𝑒 → no intersection !

Computer Graphics 2020/21 - Ray Tracing Acceleration

tymin

tymax
txmin

txmax

• Representation of an AABB

13

Ray – AABB Intersection

// region R = { (x, y, z) | min.x<=x<=max.x,
// min.y<=y<=max.y, min.z<=z<=max.z }
struct AABB {

Point min;
Point max;

};

Computer Graphics 2020/21 - Ray Tracing Acceleration

14

Ray – AABB Intersection
// Intersect ray R(t) = p + t*d against AABB a. When intersecting,
// return intersection distance tmin and point q of intersection
int IntersectRayAABB(Point p, Vector d, AABB a, float &tmin, Point &q)
{

tmin = 0.0f; // set to -FLT_MAX to get first hit on line
float tmax = FLT_MAX; // set to max distance ray can travel (for segment)

// For all three slabs
for (int i = 0; i < 3; i++) {

if (Abs(d[i]) < EPSILON) {
// Ray is parallel to slab. No hit if origin not within slab
if (p[i] < a.min[i] || p[i] > a.max[i]) return 0;

} else {
// Compute intersection t value of ray with near and far plane of slab
float ood = 1.0f / d[i];
float t1 = (a.min[i] - p[i]) * ood;
float t2 = (a.max[i] - p[i]) * ood;
// Make t1 be intersection with near plane, t2 with far plane
if (t1 > t2) Swap(t1, t2);
// Compute the intersection of slab intersections intervals
tmin = Max(tmin, t1);
tmax = Min(tmax, t2);
// Exit with no collision as soon as slab intersection becomes empty
if (tmin > tmax) return 0;

}
}

// Ray intersects all 3 slabs. Return point (q) and intersection t value (tmin)
q = p + d * tmin;
return 1;

}

Ch
. E

ric
so

n,
 R

ea
l-T

im
e

Co
lli

sio
n

De
te

ct
io

n

Computer Graphics 2020/21 - Ray Tracing Acceleration

• The test is a special case of the intersection test of ray against a Kay-Kajiya
slab volume, T. Kay and J. Kajiya, SIGGRAPH 1986

• The Kay-Kajiya test is a specialization of the Cyrus-Beck clipping algorithms,
M. Cyrus and J. Beck, Computer and Graphics, 1978

15

Ray – AABB Intersection

Computer Graphics 2020/21 - Ray Tracing Acceleration

• Bounding Boxes

16

Acceleration Techniques

Computer Graphics 2020/21 - Ray Tracing Acceleration

• Bounding Box Hierarchies

17

Acceleration Techniques

Computer Graphics 2020/21 - Ray Tracing Acceleration

• BVH: Bounding Volume Hierarchy

18

Acceleration Techniques

Computer Graphics 2020/21 - Ray Tracing Acceleration

• Construction
• Recursive construction algorithm
• Initialize root node. Fill it with all triangles in the scene
• Recursively subdivide the root node
• Stop recursion if depth of node exceeds a given value or the node contains less than

a given number of triangles
• Split the node into a left and right child otherwise

19

Bounding Volume Hierarchy

Computer Graphics 2020/21 - Ray Tracing Acceleration

• Construction

20

Bounding Volume Hierarchy

buildTree(Scene& scene) {
create root node containing all triangles;
subdivide(root);

}

subdivide(Node& node) {
if (node.depth == MAX_DEPTH ||

node.numTriangles <= MIN_TRIANGLES)
return;

compute optimal split position;
create left and right child node;
sort triangles into left and right node;
compute bounds of left and right node;
subdivide(left);
subdivide(right);

}

Computer Graphics 2020/21 - Ray Tracing Acceleration

Bounding Volume Hierarchy

• Computing the optimal splitting plane
• spatial median: split nodes in the middle along axis with largest extent
• object median: split nodes so that left and right children contain the same number of

triangles
• cost function: minimize a cost function

21Computer Graphics 2020/21 - Ray Tracing Acceleration

Bounding Volume Hierarchy

• Surface Area Heuristics, SAH
Theorem:

• given a box B completely contained in a box A
• the probability that a ray traversing A intersects B is given by 𝑆𝑆𝑆𝑆(𝐵𝐵)/𝑆𝑆𝑆𝑆(𝑆𝑆), 𝑆𝑆𝑆𝑆(·) is

the surface area.

22

A

B

Computer Graphics 2020/21 - Ray Tracing Acceleration

• Cost function for a split

𝐶𝐶 = 𝐶𝐶𝑇𝑇 + 𝑃𝑃𝑙𝑙
𝑆𝑆𝑆𝑆 𝐵𝐵𝑙𝑙
𝑆𝑆𝑆𝑆 𝐵𝐵𝑝𝑝

+ 𝑃𝑃𝑒𝑒
SA Br
SA Bp

• where 𝑃𝑃𝑙𝑙 and 𝑃𝑃𝑟𝑟 are the number of primitives in the left and right child nodes
respectively, and 𝐵𝐵𝑙𝑙, 𝐵𝐵𝑟𝑟 and 𝐵𝐵𝑝𝑝 are the left, right and parent bounding boxes. 𝐶𝐶𝑇𝑇 is
the cost of computing a ray-primitive intersection relative to the cost of traversing a
node.

23

Bounding Volume Hierarchy

Computer Graphics 2020/21 - Ray Tracing Acceleration

• Problem statement
• find the split position which minimizes the cost function

• Computing the SAH
• Difficult task, the search space is extremely large!

→ all possible partitions → impossible for e.g. 1mio triangles

• Ingo Wald: “On fast Construction of SAH-based Bounding Volume
Hierarchies”, 2007:
We consider a set of possible “splitting planes” in x, y, and z direction

• compute bounds in x, y, and z
• generate split planes in constant distances in each dimension
• split BV along these planes

→ triangles intersecting the plane have to be sorted into one of the children
• compute BV for the two children for each plane
• use split plane, for which SAH predicts lowest cost

24

Bounding Volume Hierarchy

Computer Graphics 2020/21 - Ray Tracing Acceleration

http://www.sci.utah.edu/%7Ewald/Publications/2007/ParallelBVHBuild/fastbuild.pdf

• adapts well to arbitrary geometries
• memory consumption is predictable

• each geometric primitive (e.g. triangle) occurs in exactly one leaf node

• nodes can overlap in space
• recursive traversal algorithm (use a stack!)

25

Bounding Volume Hierarchy

Computer Graphics 2020/21 - Ray Tracing Acceleration

Spatial Hierarchies

• BVHs are built based on the objects → object hierarchy
• Alternatively, one can also build a hierarchy in space → spatial hierarchies

• Simplest version: uniform grid

Computer Graphics 2020/21 - Ray Tracing Acceleration 26

Uniform Space partitioning

• Uniform Grid
• store for each cell intersecting triangles
• for ray intersection test: traverse the grid cells along ray
• check triangles inside cells

27

Spatial Hierarchies – Uniform Grid

Computer Graphics 2020/21 - Ray Tracing Acceleration

• Uniform Grid
• simple and fast traversal algorithm (e.g. line rasterization in 3D, see later on)
• Not appropriate to handle geometry which is not equally distributed in space, high

cost stepping empty cells, cannot skip empty space
• Inadequate for handling geometries of very different sizes, no optimal cell size

• Intersection tests: two strategies
• Extended 3D-Bresenham line drawing (rasterization)
• follow ray from cell boundary to cell boundary

28

Spatial Hierarchies – Uniform Grid

Computer Graphics 2020/21 - Ray Tracing Acceleration

• Ray Traversal with Extended Bresenham
• major problem: rasterization method will miss some cells
• Can be corrected by carefully looking at decider variable

29

Spatial Hierarchies – Uniform Grid

cell missed

Computer Graphics 2020/21 - Ray Tracing Acceleration

• Alternative method (Amanatides 1987)
• step from cell boundary to cell boundary
• Key idea:

• distance between vertical boundaries is constant, the same applies for horizontal boundaries.
• if the ray crosses a vertical boundary, step along the x axis; if the ray crosses an horizontal

boundary, step along the y axis.

30

Spatial Hierarchies – Uniform Grid

∆tx

∆ty

Computer Graphics 2020/21 - Ray Tracing Acceleration

31

Spatial Hierarchies – Uniform Grid

tx

ty

(𝑖𝑖𝑚𝑚 , 𝑖𝑖𝑦𝑦)

𝑀𝑀
𝑒𝑒 + 𝑡𝑡min 𝑡𝑡

(𝑖𝑖𝑚𝑚 + 1 , 𝑖𝑖𝑦𝑦)

(𝑖𝑖𝑚𝑚 , 𝑖𝑖𝑦𝑦 + 1)

Computer Graphics 2020/21 - Ray Tracing Acceleration

• Method
• maintain two variables measuring distance to next vertical and horizontal planes
• if distance 𝑡𝑡𝑚𝑚 to vertical plane is less than the distance 𝑡𝑡𝑦𝑦 to horizontal plane step

along 𝑥𝑥 axis, else step along 𝑦𝑦 axis.
• Updates: 𝑡𝑡𝑚𝑚 += Δ𝑡𝑡𝑚𝑚 and 𝑡𝑡𝑦𝑦 += Δ𝑡𝑡𝑦𝑦

• Given a ray 𝑒𝑒 + 𝑡𝑡 𝑡𝑡 with 𝑡𝑡min and 𝑡𝑡max
• If ray has direction (𝑡𝑡𝑚𝑚,𝑡𝑡𝑦𝑦 ,𝑡𝑡𝑧𝑧) then Δ𝑡𝑡𝑚𝑚 = 𝑀𝑀

𝑑𝑑𝑥𝑥
,Δ𝑡𝑡𝑦𝑦 = 𝑀𝑀

𝑑𝑑𝑦𝑦
,Δ𝑡𝑡𝑧𝑧 = 𝑀𝑀

𝑑𝑑𝑧𝑧

• where 𝑀𝑀 is the grid size

• Initialization:
• Find grid cell of ray’s starting point 𝑒𝑒 + 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡 → (𝑖𝑖𝑚𝑚, 𝑖𝑖𝑦𝑦 , 𝑖𝑖𝑧𝑧)
• Find ray parameters 𝑡𝑡𝑚𝑚, 𝑡𝑡𝑦𝑦 , 𝑡𝑡𝑧𝑧 where ray leaves corresponding slabs

32

Spatial Hierarchies – Uniform Grid

Computer Graphics 2020/21 - Ray Tracing Acceleration

Spatial Hierarchies – Uniform Grid

float M = grid_cell_size;

traverseGrid(float3 eye, float3 dir, float tmin, float tmax)
{

// first grid cell (ix,iy,iz) depending on eye + tmin*dir
int ix = …, iy = …, iz = …;

// ray parameter along x,y,z leaving the corresponding slab
float tx = …, ty = …, tz = …;

// step size for ray parameter along x,y,z
float dtx = M / dir.x, dty = M / dir.y, dtz = M / dir.z;

while (tx < tmax || ty < tmax || tz < tmax) {
if (tx < ty && tx < tz) { // go along x

ix++;
intersectWithCell(eye,dir,tmin,tmax,ix,iy,iz);
tx += tdx;

else if … // other dimensions analog
}

}

Computer Graphics 2020/21 - Ray Tracing Acceleration 33

• Large triangles overlap multiple cells, so they can get checked multiple times
→“Mailboxing”

• assign a unique identifier to each ray
• store for each triangle the index of last ray that it got checked against
• before testing a triangle, check index to see if check was already done
• this can fail for parallel threads, if one thread overwrites mailbox of other thread

• Be careful with first intersection!
• see example on the right:

ray traverses blueish cell. Because the orange
triangle overlaps the cell, it is checked and
intersection (1) is found. However, (1) is outside
the cell, so a closer intersection (2) can exist!

• → only stop traversal when an intersection
within the current cell has been found

34

Spatial Hierarchies - Caveats

Computer Graphics 2020/21 - Ray Tracing Acceleration

12

35

Spatial Hierarchies – Octrees

Octree Space partitioning

Computer Graphics 2020/21 - Ray Tracing Acceleration

Spatial Hierarchies – Octrees

• Octree Space Partitioning
• Cannot adapt perfectly to scene (split planes fixed)
• traversal of children not very efficient

• Better alternative: kd-trees

Computer Graphics 2020/21 - Ray Tracing Acceleration 36

• Example

37

Spatial Hierarchies – kd-Trees

Computer Graphics 2020/21 - Ray Tracing Acceleration

• Properties
• Every node is subdivided spatially in one dimension only (x, y, and z)
• Split plane can be chosen freely → adapts well to arbitrary geometry
• Split dimension changes over levels
• very efficient recursive traversal

• Leaf-storing tree
• internal nodes only store dividing plane (splitting axis and splitting position) and

reference to children nodes, but no triangles
• leaf nodes stores triangles intersecting the cells

38

Spatial Hierarchies – kd-Trees

Computer Graphics 2020/21 - Ray Tracing Acceleration

Spatial Hierarchies – kd-Trees

• Generation: similar to BVHs
• Start with single root node with all triangles assigned

• Recursively split nodes, until a node contains less triangles than a given
threshold (e.g. 10) → leaf node

• Split nodes always along the longest axis
• Decide about optimal split plane position using SAH

Computer Graphics 2020/21 - Ray Tracing Acceleration 39

• Traversal: simple recursive approach
• as with Bounding volume hierarchies
• But

• when we traverse children, we traverse them in ray order
→ “near” child, “far” child

• If we find a hit in “near” child, we can skip “far” child
• Caveat:

In the example on the right,
the blue triangle is tested as
part of the near child. An
intersection is found, but
outside the near child.
The closer intersection
with the orange triangle is
thus missed
→ only count intersection inside the node

• Sorting and early exit important for performance !

40

Spatial Hierarchies – kd-Trees

Computer Graphics 2020/21 - Ray Tracing Acceleration

near

far

nearfar
near

far

• Instead of recursion, it is preferable to use a stack for traversal
• An entry on the stack contains:

• a hierarchy node to be tested
• tmin of entry point, tmax of exit point

• We start by pushing the root node onto the stack
• We then pull nodes from the stack and process them:

• if it is a leaf, we intersect with the triangles and stop if intersection is found
• if it is an inner node, we intersect with the children and push the intersected children

onto the stack, in near to far order
• when stack is empty, and no intersection is found, the ray does not intersect

41

Spatial Hierarchies – kd-Trees

Computer Graphics 2020/21 - Ray Tracing Acceleration

node

tmin tmax

42

Spatial Hierarchies – kd-Trees

// test if ray intersects scene bounding box
hit = intersect(ray, scene.boundingBox);
if (hit == null)

return NO_INTERSECTION;
stack.push(scene.boundingBox,hit.tmin,hit.tmax);

// main loop
while (!stack.empty()) {

node,tmin,tmax = stack.pop();
if (node.type == LEAF_NODE)

intersect with triangles;
stop if intersection found

else
intersect with children;
push hit children on stack near to far

}

Computer Graphics 2020/21 - Ray Tracing Acceleration

• Inner Nodes
• determine near and far children

→ in a kd-tree we only have two children
→ order defined by sign of ray direction in split dimension

• cases
• ray intersect near child only: push near child onto stack
• ray intersect far child only: push far child onto stack
• ray intersect both children: push far child, then near child (near child will be processed first)

• the above decision can be done very efficiently in a kd-tree!

43

Spatial Hierarchies – kd-Trees

Computer Graphics 2020/21 - Ray Tracing Acceleration

Kd-Trees

• near child – far child

Computer Graphics 2020/21 - Ray Tracing Acceleration 44

left rightleft right left right

ray.direction.x > 0
Near child: left
Far child: right

ray.direction.x < 0
Near child: right
Far child: left

ray.direction.x == 0
Special case during
traversal

• decision which children to push: look at tDist = ray parameter at split plane

45

Kd-Trees

left right left right left right

tMin, entry point

tMax, exit point

tDist, intersection with Kd plane

Case tDist > tMax
Push near (left) child

Case tDist < tMin
Push far (right) child only

All other cases
Push both children, far (right)
child first

Computer Graphics 2020/21 - Ray Tracing Acceleration

• Leaf Nodes
• intersect ray with geometric primitives in node.
• if an intersection was found inside the node (see caveat before)

→ return the closest intersection point and stop traversal
• continue traversal otherwise

46

Kd-Trees

Closest
intersection

Computer Graphics 2020/21 - Ray Tracing Acceleration

47

Kd-Tree

// main loop
while (!stack.empty()) {

node,tmin,tmax = stack.pop();
if (node.type == LEAF_NODE)

intersect with triangles;
stop if intersection found

else
tDist = intersection with split plane
if (tDist > tmax)

stack.push(near child,tmin,tmax);
else if (tDist < tmin)

stack.push(far child,tmin,tmax);
else

stack.push(far child,tmin,tdist);
stack.push(near child,tdist,tmax);

}

Computer Graphics 2020/21 - Ray Tracing Acceleration

• Inner Node: special cases
• ray is parallel to splitting plane
• near child depends on position of ray starting point

• Example:
split axis is 𝑥𝑥

48

Kd-Tree

left right left right

ray.origin.x < split
Push left child only

ray.origin.x >= split
Push right child only

Computer Graphics 2020/21 - Ray Tracing Acceleration

Acceleration Structures

• Mostly used: kd-trees or BVHs

• Must be generated in a preprocess: 𝑂𝑂 𝑛𝑛 ,𝑂𝑂 𝑛𝑛 log𝑛𝑛 ,𝑂𝑂 𝑛𝑛2 , …
• but then traversal is usually 𝑂𝑂(log𝑛𝑛)

• Performance very much depends on quality of hierarchy
→ good choice of splitting plane !
→ SAH delivers good results

Computer Graphics 2020/21 - Ray Tracing Acceleration 49

	Lecture #16��Ray Tracing –�Acceleration Structures
	Introduction
	Ray Tracing Complexity
	Ray Tracing – Acceleration Techniques
	Acceleration Techniques
	Acceleration Techniques
	Ray – Box Intersection
	Ray – AABB Intersection
	Ray – AABB Intersection
	Ray – AABB Intersection
	Ray – AABB Intersection
	Ray – AABB Intersection
	Ray – AABB Intersection
	Ray – AABB Intersection
	Ray – AABB Intersection
	Acceleration Techniques
	Acceleration Techniques
	Acceleration Techniques
	Bounding Volume Hierarchy
	Bounding Volume Hierarchy
	Bounding Volume Hierarchy
	Bounding Volume Hierarchy
	Bounding Volume Hierarchy
	Bounding Volume Hierarchy
	Bounding Volume Hierarchy
	Spatial Hierarchies
	Spatial Hierarchies – Uniform Grid
	Spatial Hierarchies – Uniform Grid
	Spatial Hierarchies – Uniform Grid
	Spatial Hierarchies – Uniform Grid
	Spatial Hierarchies – Uniform Grid
	Spatial Hierarchies – Uniform Grid
	Spatial Hierarchies – Uniform Grid
	Spatial Hierarchies - Caveats
	Spatial Hierarchies – Octrees
	Spatial Hierarchies – Octrees
	Spatial Hierarchies – kd-Trees
	Spatial Hierarchies – kd-Trees
	Spatial Hierarchies – kd-Trees
	Spatial Hierarchies – kd-Trees
	Spatial Hierarchies – kd-Trees
	Spatial Hierarchies – kd-Trees
	Spatial Hierarchies – kd-Trees
	Kd-Trees
	Kd-Trees
	Kd-Trees
	Kd-Tree
	Kd-Tree
	Acceleration Structures

