
Lecture #15

Ray Tracing - Basics
Computer Graphics

Winter Term 2020/21

Marc Stamminger / Roberto Grosso

• Up to now: Rasterization
• Scanline algorithm to enumerate hit pixels
• Local illumination using Phong lighting
• Occlusion using depth buffer

• Ray Tracing:
A different rendering paradigm

• More illumination effects → Global Illumination
• Physically motivated illumination computations

2

Introduction

Computer Graphics 2020/21 - Ray Tracing Basics

Up to now: Rasterization

3

for each triangle t
find pixels inside t

shade pixel

Computer Graphics 2020/21 - Ray Tracing Basics

Ray Casting

• Ray Casting ⊂ Ray Tracing

for each pixel p
cast a ray through pixel p

shade p

= “find scene
point visible in p”

Computer Graphics 2020/21 - Ray Tracing Basics 4

Ray Casting → Ray Tracing

• Having a method at hand that intersects a ray with our scene, we use this to
generate new lighting effects that are not directly possible with rasterization
→ reflections
→ refractions
→ shadows
→ indirect illumination (later)
…

Computer Graphics 2020/21 - Ray Tracing Basics 5

Ray Tracing

• Ray Casting → Ray Tracing
eye rays

shadow rays

reflection rays

refraction rays

Computer Graphics 2020/21 - Ray Tracing Basics 6

• 1968: Ray Casting: Arthur Appel
• 1979: Recursive ray tracing: Turner Whitted

7

Introduction

reflection
and

refraction Images by Turner Whitted

Computer Graphics 2020/21 - Ray Tracing Basics

8

Introduction

Image by Henrik Wann Jensen. He writes: One of my first ray tracing images (1990-1991).
Rendered first time on an Amiga in HAM mode (the good old days).

Computer Graphics 2020/21 - Ray Tracing Basics

9

Introduction

• Car with reflections, refractions, environment lighting

Computer Graphics 2020/21 - Ray Tracing Basics

Introduction

10

• Indirect Illumination → not possible with simple ray tracing

Computer Graphics 2020/21 - Ray Tracing Basics

Introduction

• Caustics: light patterns generated by reflections off specular surfaces
→ not possible with simple ray tracing

• more in the lecture “Global Illumination”, next summer term

https://blenderartists.org/forum/showthread.php?116585-
Realistic-underwater-lighting-and-caustics-added-tutorial-link

graphics.ucsd.edu

Computer Graphics 2020/21 - Ray Tracing Basics 11

Ray Tracing

• Today: Basics of Ray Tracing
• how to generate eye rays
• how to intersect a ray with scene geometry
• a first ray caster

• Next Lectures:
• how to generate secondary rays
• recursive ray tracing procedure
• accelerations structures for fast ray tracing
• special effects possible with ray tracing

Computer Graphics 2020/21 - Ray Tracing Basics 12

Rays

• Mathematical representation of
an (eye) ray

• Parametric line from ray origin (eye)
𝑒𝑒 in direction 𝑑𝑑

𝑝𝑝 𝑡𝑡 = 𝑒𝑒 + 𝑡𝑡𝑑𝑑

• 𝑝𝑝(0) = 𝑒𝑒
• 0 < 𝑡𝑡1 < 𝑡𝑡2 ⇒ 𝑝𝑝(𝑡𝑡1) closer to the

eye than 𝑝𝑝(𝑡𝑡2)
• 𝑡𝑡 < 0 ⇒ 𝑝𝑝(𝑡𝑡) behind the eye

• Ray test:
• find intersection of ray with scene

with smallest 𝑡𝑡 > 0

13

𝑒𝑒𝑑𝑑

Computer Graphics 2020/21 - Ray Tracing Basics

• Every eye ray belongs to one pixel
• Starting point of eye ray: camera

• Eye ray goes through pixel on
image plane

• For a particular pixel 𝑝𝑝, the eye ray is:
𝑒𝑒 = camera position
𝑑𝑑 = (𝑝𝑝 − 𝑒𝑒)/ 𝑝𝑝 − 𝑒𝑒

• Intersection with objects:
gather t-values with 𝑡𝑡 > 0

• Smallest 𝑡𝑡 ⇒ first intersection ⇒ visible object

14

Eye Ray Generation

𝑒𝑒
𝑝𝑝

Computer Graphics 2020/21 - Ray Tracing Basics

Eye Ray Generation

• Remember from Lecture #07: Viewing and Perspective
Given camera position, view direction and up-vector
→ compute camera basis vectors 𝑢𝑢, 𝑣𝑣,𝑤𝑤

• Use this to generate an image plane:

𝑒𝑒 + 𝑤𝑤 + 𝑥𝑥𝑢𝑢 + 𝑦𝑦𝑣𝑣

camera

𝑔𝑔

𝑡𝑡

camera

𝑢𝑢

𝑣𝑣

𝑤𝑤

𝑢𝑢

𝑣𝑣

𝑤𝑤𝑒𝑒

Computer Graphics 2020/21 - Ray Tracing Basics 15

Eye Ray Generation

• Point (𝑥𝑥,𝑦𝑦) on image plane:
𝑒𝑒 + 𝑤𝑤 + 𝑥𝑥𝑢𝑢 + 𝑦𝑦𝑣𝑣

• Using the field of view 𝑓𝑓𝑓𝑓𝑣𝑣𝑦𝑦 and aspect ratio 𝑎𝑎𝑎𝑎𝑝𝑝𝑒𝑒𝑎𝑎𝑡𝑡,
a window is defined on the image plane:

𝑥𝑥,𝑦𝑦 ∈ −𝑥𝑥𝑚𝑚, 𝑥𝑥𝑚𝑚 × −𝑦𝑦𝑚𝑚,𝑦𝑦𝑚𝑚
with 𝑦𝑦𝑚𝑚 = tan 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

2
, 𝑥𝑥𝑚𝑚 = 𝑎𝑎𝑎𝑎𝑝𝑝𝑒𝑒𝑎𝑎𝑡𝑡 𝑦𝑦𝑚𝑚

• Finally, we map integer pixel coordinates 𝑖𝑖, 𝑗𝑗
to this window:
𝑥𝑥 = 𝑖𝑖+0.5

𝑛𝑛𝑥𝑥
× 2 − 1 𝑥𝑥𝑚𝑚, 𝑦𝑦 analog

Computer Graphics 2020/21 - Ray Tracing Basics 16

𝑢𝑢

𝑣𝑣

𝑤𝑤𝑒𝑒

relative
coordinate

number of
pixels in x

(𝑖𝑖, 𝑗𝑗)

Eye Ray Generation

• Eye ray computation:
• compute (𝑢𝑢, 𝑣𝑣,𝑤𝑤) for camera frame
• for pixel (𝑖𝑖, 𝑗𝑗): eye ray is 𝑒𝑒 + 𝑡𝑡𝑑𝑑 with

𝑒𝑒 = camera position

𝑥𝑥 = 𝑖𝑖+0.5
𝑛𝑛𝑥𝑥

× 2 − 1 × 𝑎𝑎𝑎𝑎𝑝𝑝𝑒𝑒𝑎𝑎𝑡𝑡 × tan 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
2

and

𝑦𝑦 =
𝑗𝑗 + 0.5
𝑛𝑛𝑓𝑓

× 2 − 1 × tan
𝑓𝑓𝑓𝑓𝑣𝑣𝑦𝑦

2

𝑑𝑑 =
w + xu + yv
𝑤𝑤 + 𝑥𝑥𝑢𝑢 + 𝑦𝑦𝑣𝑣

• Corresponds to pinhole camera with planar projection plane

Computer Graphics 2020/21 - Ray Tracing Basics 17

Eye Rays: Other Camera Models

• In ray tracing, we can easily handle camera types other than projective
pinhole cameras, e.g. panoramic cameras, fish eye lenses, or similar

• Example: panoramic camera
• eye rays through grid on

surrounding cylinder

By Nickj (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0) or GFDL
(http://www.gnu.org/copyleft/fdl.html)], via Wikimedia Commons

Computer Graphics 2020/21 - Ray Tracing Basics 18

https://commons.wikimedia.org/wiki/File:Bundeena-pier-360-panorama-NSW-Australia.jpg

Eye Rays: Other Camera Models

• Kolb et al.: “A Realistic Camera Model for Computer Graphics”
• Simulate entire lens system to mimic real cinematic lenses

Computer Graphics 2020/21 - Ray Tracing Basics 19

16mm fish eye

35mm wide angle 50mm

200mm tele

https://dl.acm.org/citation.cfm?id=218463

Eye Rays: Antialiasing

• Simple Anti-Aliasing: shoot multiple eye rays through pixel
• jitter eye rays over pixel

→ smoothing of edges
→ multiple texture samples
→ high impact on performance

Computer Graphics 2020/21 - Ray Tracing Basics 20

Eye Rays: Antialiasing

• Sample patterns

Computer Graphics 2020/21 - Ray Tracing Basics 21

uniform:
• very uniform distribution
• good numerical properties
• only square numbers as sample numbers

random:
• non-uniform distribution
• worse numerical properties
• arbitrary sample numbers, incrementable

random stratified:
• uniform distribution
• good numerical properties
• only square numbers as sample numbers

Eye Rays: Adaptive Sampling

• Adaptive Sampling:
try to reduce number of eye rays
→ don’t cast multiple rays per pixel,
if color in pixel uniform

• cast eye rays through pixel grid
corners

• if color for one pixel vary strongly (by more than a threshold), subdivide
corresponding cells and cast additional rays

• stop for tiny subpixels
• average results for each pixel

Computer Graphics 2020/21 - Ray Tracing Basics 22

Eye Rays: Depth of Field

• Real-world lenses have a focus plane
• Objects out of this plane get blurry

• We can also simulate Depth of Field by jittering eye rays

Computer Graphics 2020/21 - Ray Tracing Basics 23

Eye Rays: Depth of Field

• For each pixel, cast multiple rays,
jitter starting point of ray around optical center (= pinhole)

• all rays of one pixel must intersect at focus plane

• average over rays per pixel → depth of field effect

Computer Graphics 2020/21 - Ray Tracing Basics 24

focus plane

Ray – Object Intersection

• Does a given ray 𝑒𝑒 + 𝑡𝑡𝑑𝑑 intersect a scene object ?
And if so, where and at which ray parameter 𝑡𝑡 ?

• Today we look at triangles,
polygons, and spheres

𝑢𝑢

𝑣𝑣

𝑤𝑤𝑒𝑒

Computer Graphics 2020/21 - Ray Tracing Basics 25

(𝑖𝑖, 𝑗𝑗)

• Planes and plane equations
• Normal of a plane through points 𝐴𝐴,𝐵𝐵,𝐶𝐶

𝑛𝑛 = (𝐵𝐵 − 𝐴𝐴) × (𝐶𝐶 − 𝐴𝐴)/ (𝐵𝐵 − 𝐴𝐴) × (𝐶𝐶 − 𝐴𝐴)

• plane equation, point-normal form
𝑛𝑛 ∘ 𝑥𝑥 − 𝐴𝐴 = 0

• constant-normal form
𝑛𝑛 ∘ 𝑥𝑥 = 𝑎𝑎 (= n ∘ 𝐴𝐴 = 𝑛𝑛 ∘ 𝐵𝐵 = 𝑛𝑛 ∘ 𝐶𝐶)

• 𝑎𝑎 is the distance of the plane to the origin

26

Ray – Object Intersection

A
B

C

Computer Graphics 2020/21 - Ray Tracing Basics

• Parametric representation of a ray
𝑝𝑝 𝑡𝑡 = 𝑒𝑒 + 𝑡𝑡𝑑𝑑, 𝑑𝑑 = 1

• Plane equation
𝑛𝑛 ∘ 𝑥𝑥 = 𝑎𝑎

⇒ 𝑛𝑛 ∘ 𝑝𝑝 𝑡𝑡 = 𝑎𝑎 → 𝑡𝑡 = 𝑠𝑠−𝑛𝑛∘𝑒𝑒
𝑛𝑛∘𝑑𝑑

→ 𝑞𝑞 = 𝑒𝑒 + 𝑡𝑡𝑑𝑑

• Notes:
• if 𝑛𝑛 ∘ 𝑑𝑑 = 0, the ray is parallel to the plane
• if 𝑡𝑡 < 0, the intersection is “behind” the starting

point 𝑒𝑒

27

Ray - Plane intersection

Computer Graphics 2020/21 - Ray Tracing Basics

𝑒𝑒

𝑞𝑞

• First intersect with plane supported by triangle, then check whether
intersection point is inside triangle

• Many algorithms exist for this problem

• Simple approach: use barycentric coordinates to describe intersection point

• System of equations:
𝑒𝑒 + 𝑡𝑡𝑑𝑑 = 𝑎𝑎 + 𝛽𝛽 𝑏𝑏 − 𝑎𝑎 + 𝛾𝛾 𝑎𝑎 − 𝑎𝑎

(barycentric coordinate 𝛼𝛼 replaced by 1 − 𝛽𝛽 − 𝛾𝛾)

• Unknowns: 𝑡𝑡,𝛽𝛽, 𝛾𝛾
• Intersection at 𝑞𝑞 = 𝑒𝑒 + 𝑡𝑡𝑑𝑑 if

• 𝑡𝑡 > 0 (𝑞𝑞 on positive part of ray)

• 𝛽𝛽 ≥ 0, 𝛾𝛾 ≥ 0, 𝛼𝛼 ≥ 0 ⇔ 𝛽𝛽 + 𝛾𝛾 ≤ 1 (𝑞𝑞 within triangle)

28

Ray - Triangle intersection

a
b

cq

Computer Graphics 2020/21 - Ray Tracing Basics

• Solve 𝑒𝑒 + 𝑡𝑡𝑑𝑑 = 𝑎𝑎 + 𝛽𝛽 𝑏𝑏 − 𝑎𝑎 + 𝛾𝛾(𝑎𝑎 − 𝑎𝑎):

⋮ ⋮ ⋮
𝑑𝑑 𝑎𝑎 − 𝑏𝑏 𝑎𝑎 − 𝑎𝑎
⋮ ⋮ ⋮

𝐴𝐴

𝑡𝑡
𝛽𝛽
𝛾𝛾

=
⋮

𝑎𝑎 − 𝑒𝑒
⋮

29

Ray - Triangle Intersection

Computer Graphics 2020/21 - Ray Tracing Basics

• Solve using Cramer’s rule:

• 𝑡𝑡 = det
⋮ ⋮ ⋮

𝑎𝑎 − 𝑒𝑒 𝑎𝑎 − 𝑏𝑏 𝑎𝑎 − 𝑎𝑎
⋮ ⋮ ⋮

/ det𝐴𝐴

• 𝛽𝛽 = det
⋮ ⋮ ⋮
𝑑𝑑 𝑎𝑎 − 𝑒𝑒 𝑎𝑎 − 𝑎𝑎
⋮ ⋮ ⋮

/ det𝐴𝐴

• 𝛾𝛾 = det
⋮ ⋮ ⋮
𝑑𝑑 𝑎𝑎 − 𝑏𝑏 𝑎𝑎 − 𝑒𝑒
⋮ ⋮ ⋮

/ det𝐴𝐴

• If det𝐴𝐴 = 0, then
• The triangle is degenerate (a line or a point) or
• The ray is parallel to the triangle

30

Ray - Triangle intersection

Computer Graphics 2020/21 - Ray Tracing Basics

31

Ray - Triangle intersection

Boolean raytri (ray r, point3 a, point3 b, point3 c,
interval[t0,t1])

compute t
if (t < t0) or (t > t1) then

return false
compute det(A)
if det(A) == 0 // border case. no intersection

return false
compute γ
if (γ < 0) or (γ > 1) then

return false
compute β
if (β < 0) or (β > 1) then

return false
if (β + γ >1) then

return false
else

return true

Computer Graphics 2020/21 - Ray Tracing Basics

Ray - Triangle intersection

• Optimized implementation:
• first, use det 𝑎𝑎, 𝑏𝑏, 𝑎𝑎 = 𝑎𝑎 ∘ 𝑏𝑏 × 𝑎𝑎 = 𝑏𝑏 ∘ 𝑎𝑎 × 𝑎𝑎 = 𝑎𝑎 ∘ (𝑎𝑎 × 𝑏𝑏)
• so in our case:

• normal 𝑛𝑛 = 𝑏𝑏 − 𝑎𝑎 × 𝑎𝑎 − 𝑎𝑎 (not normalized)
• det𝐴𝐴 =𝑑𝑑 ∘ 𝑛𝑛

• 𝑡𝑡 = det 𝑎𝑎−𝑒𝑒,𝑎𝑎−𝑏𝑏,𝑎𝑎−𝑐𝑐
det 𝐴𝐴

= 𝑎𝑎−𝑒𝑒 ∘𝑛𝑛
det 𝐴𝐴

• 𝛽𝛽 = det(𝑑𝑑,𝑎𝑎−𝑒𝑒,𝑎𝑎−𝑐𝑐)
det 𝐴𝐴

= a−c ∘(𝑑𝑑× 𝑎𝑎−𝑒𝑒)
det A

• 𝛾𝛾 = det(𝑑𝑑,𝑎𝑎−𝑏𝑏,𝑎𝑎−𝑒𝑒)
det 𝐴𝐴

= − 𝑎𝑎−𝑏𝑏 ∘(𝑑𝑑× 𝑎𝑎−𝑒𝑒)
det 𝐴𝐴

Computer Graphics 2020/21 - Ray Tracing Basics 32

• These optimizations are used in the following code

• Note: ray is parameterized by two points (𝑝𝑝, 𝑞𝑞), so 𝑒𝑒 = 𝑝𝑝 and 𝑑𝑑 = 𝑞𝑞 − 𝑝𝑝

33

Ray - Triangle intersection

// Given ray pq and triangle abc, returns whether ray intersects
// triangle and if so, also returns the barycentric coordinates (u,v,w)
// of the intersection point
int IntersectSegmentTriangle(Point p, Point q, Point a, Point b, Point c,

float &u, float &v, float &w, float &t)
{

Vector ab = b – a;
Vector ac = c – a;
Vector qp = p – q;

// Compute triangle normal. Can be precalculated or cached if
// intersecting multiple segments against the same triangle
Vector n = Cross(ab, ac);

// Compute denominator d.
float d = Dot(qp, n);

// If d == 0, ray is parallel to triangle or triangle is degenerate
if (fabs(d) < 1e-10) return 0;

Computer Graphics 2020/21 - Ray Tracing Basics

34

Ray - Triangle intersection

// Compute intersection t value of pq with plane of triangle.
// A ray intersects iff 0 <= t.
// Delay dividing by d until intersection has been found
Vector ap = p – a;
t = Dot(ap, n);
if (t < 0.0f) return 0;

// Compute barycentric coordinate components and test if within bounds
Vector e = Cross(qp, ap);
v = Dot(ac, e);
if (v < 0.0f || v > d) return 0;
w = -Dot(ab, e);
if (w < 0.0f || v + w > d) return 0;

// Segment/ray intersects triangle. Perform delayed division and
// compute the last barycentric coordinate component
float ood = 1.0f / d;
t *= ood;
v *= ood;
w *= ood;
u = 1.0f - v – w;
return 1;

}

Computer Graphics 2020/21 - Ray Tracing Basics

• Interpretation of ray-triangle intersection test [Möller,Trumbore]
• Transform to new coordinate system (described by matrix 𝐴𝐴) from two

triangle edges and ray direction
• then 𝑡𝑡 = 𝑒𝑒𝑧𝑧,𝛽𝛽 = 𝑏𝑏𝑥𝑥, 𝛾𝛾 = 𝑎𝑎𝑓𝑓

35

Ray - Triangle intersection

Computer Graphics 2020/21 - Ray Tracing Basics

https://en.wikipedia.org/wiki/M%C3%B6ller%E2%80%93Trumbore_intersection_algorithm

• Given a planar polygon with
• 𝑚𝑚 vertices 𝑝𝑝1 through 𝑝𝑝𝑚𝑚
• All on a plane with normal 𝑛𝑛

1. compute intersection 𝑝𝑝 of ray with the plane containing the polygon

2. test if 𝑝𝑝 is within the polygon

36

Ray – Polygon Intersection

Computer Graphics 2020/21 - Ray Tracing Basics

1. Ray Polygon Intersection
• Ray 𝑒𝑒 + 𝑡𝑡𝑑𝑑
• Compute intersection with plane containing polygon

𝑝𝑝 = 𝑒𝑒 +
𝑝𝑝1 − 𝑒𝑒 ∘ 𝑛𝑛
𝑑𝑑 ∘ 𝑛𝑛

𝑑𝑑

2. Test if 𝑝𝑝 lies in polygon
• Simple solution:

Project polygon and 𝑝𝑝 onto the coordinate plane with the largest projection.
• Then do 2D inside-outside test

37

Ray – Polygon Intersection

𝑥𝑥

𝑦𝑦
𝑧𝑧

In this example, we project the triangle
on to the 𝑥𝑥𝑦𝑦-plane because the normal
has maximal component in 𝑧𝑧

Computer Graphics 2020/21 - Ray Tracing Basics

ray1 ray2

Ray – Polygon Intersection

• Two different cases:
• Polygon is convex → simple edge tests possible
• Polygon is non-convex → more complicated in/out test needed

Computer Graphics 2020/21 - Ray Tracing Basics 38

• Convex polytopes (polyhedra)
• A polyhedron (convex polygon in 2D) can be described as the intersection of a set of

half spaces
• a point 𝑥𝑥 is inside the polyhedron, if it is within all the half spaces

𝑛𝑛1 ∘ 𝑥𝑥 − 𝑑𝑑1 > 0
𝑛𝑛2 ∘ 𝑥𝑥 − 𝑑𝑑2 > 0
𝑛𝑛3 ∘ 𝑥𝑥 − 𝑑𝑑3 > 0

• → Lecture “Rasterization”

• Inside – Outside test for convex polygons
• convert edges to half space representation
• check point for all half spaces

→ as soon as one fails, point is outside
→ if none fails, point is inside

• ideally: half space vectors stored with triangle
→ fast, but consumes memory

x

39

Ray – Polygon Intersection

Computer Graphics 2020/21 - Ray Tracing Basics

𝑛𝑛3
𝑛𝑛1

𝑛𝑛2

• For non-convex polygons, the previous test is not correct
→ example ?

• General polygon inside-outside test
• Generate ray from point in arbitrary direction
• Count intersections with polygon boundary

• Even → outside
• Odd → inside

40

Ray – Polygon Intersection

Computer Graphics 2020/21 - Ray Tracing Basics

Ray – Polygon Intersection

• Polygon inside-outside test
• Problem: ray hits one vertex

→ should it count twice or once?
• in the example on the right, the upper

ray should count two intersections,
the lower one only one…

• Simple robust solution:
If such a boundary case is detected,
use other ray with new direction

41Computer Graphics 2020/21 - Ray Tracing Basics

• Implicit surface equation 𝑓𝑓(𝑥𝑥) = 0
• Example: sphere with center 𝑎𝑎 and radius 𝑟𝑟:

𝑥𝑥 − 𝑎𝑎 ∘ 𝑥𝑥 − 𝑎𝑎 − 𝑟𝑟2 = 0
• Set the ray in the implicit equation and find 𝑡𝑡 and the intersection point 𝑝𝑝, if

possible
𝑓𝑓 𝑝𝑝 𝑡𝑡 = 0 ⇒ ray parameter 𝑡𝑡

42

Ray – Sphere Intersection

Computer Graphics 2020/21 - Ray Tracing Basics

• Intersection with ray 𝑝𝑝 𝑡𝑡 = 𝑒𝑒 + 𝑡𝑡𝑑𝑑:
𝑒𝑒 + 𝑡𝑡𝑑𝑑 − 𝑎𝑎 ∘ 𝑒𝑒 + 𝑡𝑡𝑑𝑑 − 𝑎𝑎 − 𝑟𝑟2 = 0

• Results in quadratic equation
𝑑𝑑 ∘ 𝑑𝑑 𝑡𝑡2 + 2 𝑑𝑑 ∘ 𝑒𝑒 − 𝑎𝑎 𝑡𝑡 + 𝑒𝑒 − 𝑎𝑎 ∘ 𝑒𝑒 − 𝑎𝑎 − 𝑟𝑟2 = 0

• Since 𝑑𝑑 ∘ 𝑑𝑑 = 1:

𝑡𝑡 =
−𝑏𝑏 ± 𝑏𝑏2 − 4𝑎𝑎

2

with 𝑏𝑏 = 2 𝑑𝑑 ∘ (𝑒𝑒 − 𝑎𝑎) and 𝑎𝑎 = 𝑒𝑒 − 𝑎𝑎 ∘ 𝑒𝑒 − 𝑎𝑎 − 𝑟𝑟2

43

Ray – Sphere Intersection

Computer Graphics 2020/21 - Ray Tracing Basics

• Meaning of the discriminant 𝑏𝑏2 − 4𝑎𝑎
• If negative → no intersection
• If positive → two intersections

• where ray enters the sphere
• where ray leaves the sphere

• If zero → ray touches sphere at exactly one point

• Always check discriminant first!

• sphere-ray intersection very fast: discriminant alone tells us, whether there
is an intersection
→ use sphere as bounding object for more complex objects

44

Ray – Sphere Intersection

Computer Graphics 2020/21 - Ray Tracing Basics

Other Intersection Tests

• Similar tests available for
• ellipsoids
• cylinders
• cones
• tori
• boxes
• …

Computer Graphics 2020/21 - Ray Tracing Basics 45

Ray Casting

• Up to now, we have the following:

for each pixel p in image plane
generate eye ray (e,d) through pixel p
tmin = infinity; omin = null;
for each scene object o

t = intersect ray (e,d) with object o
if ray intersects object and t < tmin

tmin = t;
omin = o;

if omin != null
compute lighting at hit point on object omin
set p to this color

else
set p to background color

just learned

just learned

???

Computer Graphics 2020/21 - Ray Tracing Basics 46

Ray Casting - Lighting

• How to do the lighting at a found hit point?
• → we need the hit point, its surface normal, maybe texture coordinates etc.

• For a triangle, these can be interpolated from the vertices

• Typically, this information is stored in a Hit-Object

struct Hit {
float t; // ray parameter
Obj *obj; // hit scene object
float alpha,beta,gamma; // barycentric coordinates

vec3 getPosition() { … }
vec3 getNormal() { … }
vec2 getTexCoord() { … }

}

Hit Scene::intersect(Ray &ray) { … }

Computer Graphics 2020/21 - Ray Tracing Basics 47

Ray Casting - Lighting

• new version

for each pixel p in image plane
Ray ray = camera->getEyeRay(p);
Hit closestHit = null;
for each scene object o

Hit hit = o.intersect(ray);
if closestHit == null || hit.t < closestHit.t

closestHit = hit;
if closestHit != null

c = closestHit.obj.shader.computeLighting(
closestHit.getPos(),
closestHit.getNormal(),
…);

setPixelColor(p,c);
else

setPixelColor(p,backgroundColor);

Computer Graphics 2020/21 - Ray Tracing Basics 48

Ray Casting

• Up to now, we generate exactly the same images as with a rasterizer…
• But with much more effort:

• 𝑛𝑛: number of objects (millions)
• 𝑚𝑚: number of pixels (millions)
• Intersecting one ray with all objects is 𝑂𝑂(𝑛𝑛)
• Generating the image is then 𝑂𝑂 𝑚𝑚𝑛𝑛 → impractical
• compare: rasterizer is 𝑂𝑂(𝑚𝑚 + 𝑛𝑛) (for constant depth complexity)

• Next lectures:
• how we can simulate new nice effects with ray tracing
• how we can compute ray intersections in 𝑂𝑂 log𝑛𝑛 ?

Computer Graphics 2020/21 - Ray Tracing Basics 49

	Lecture #15��Ray Tracing - Basics
	Introduction
	Up to now: Rasterization
	Ray Casting
	Ray Casting → Ray Tracing
	Ray Tracing
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Ray Tracing
	Rays
	Eye Ray Generation
	Eye Ray Generation
	Eye Ray Generation
	Eye Ray Generation
	Eye Rays: Other Camera Models
	Eye Rays: Other Camera Models
	Eye Rays: Antialiasing
	Eye Rays: Antialiasing
	Eye Rays: Adaptive Sampling
	Eye Rays: Depth of Field
	Eye Rays: Depth of Field
	Ray – Object Intersection
	Ray – Object Intersection
	Ray - Plane intersection
	Ray - Triangle intersection
	Ray - Triangle Intersection
	Ray - Triangle intersection
	Ray - Triangle intersection
	Ray - Triangle intersection
	Ray - Triangle intersection
	Ray - Triangle intersection
	Ray - Triangle intersection
	Ray – Polygon Intersection
	Ray – Polygon Intersection
	Ray – Polygon Intersection
	Ray – Polygon Intersection
	Ray – Polygon Intersection
	Ray – Polygon Intersection
	Ray – Sphere Intersection
	Ray – Sphere Intersection
	Ray – Sphere Intersection
	Other Intersection Tests
	Ray Casting
	Ray Casting - Lighting
	Ray Casting - Lighting
	Ray Casting

