Lecture \#15

Ray Tracing - Basics

Computer Graphics
Winter Term 2020/21

Marc Stamminger / Roberto Grosso

Introduction

- Up to now: Rasterization
- Scanline algorithm to enumerate hit pixels
- Local illumination using Phong lighting
- Occlusion using depth buffer
- Ray Tracing:

A different rendering paradigm

- More illumination effects \rightarrow Global Illumination
- Physically motivated illumination computations

Up to now: Rasterization

```
for each triangle t
    find pixels inside t
        shade pixel
```


Ray Casting

- Ray Casting \subset Ray Tracing

Ray Casting \rightarrow Ray Tracing

- Having a method at hand that intersects a ray with our scene, we use this to generate new lighting effects that are not directly possible with rasterization \rightarrow reflections
\rightarrow refractions
\rightarrow shadows
\rightarrow indirect illumination (later)

Ray Tracing

- Ray Casting \rightarrow Ray Tracing

eye rays

shadow rays

reflection rays

refraction rays

Introduction

- 1968: Ray Casting: Arthur Appel
- 1979: Recursive ray tracing: Turner Whitted

Introduction

Image by Henrik Wann Jensen. He writes: One of my first ray tracing images (1990-1991). Rendered first time on an Amiga in HAM mode (the good old days).

Introduction

- Car with reflections, refractions, environment lighting

Introduction

- Indirect Illumination \rightarrow not possible with simple ray tracing

Introduction

- Caustics: light patterns generated by reflections off specular surfaces \rightarrow not possible with simple ray tracing

graphics.ucsd.edu

https://blenderartists.org/forum/showthread.php?116585-Realistic-underwater-lighting-and-caustics-added-tutorial-link
- more in the lecture "Global Illumination", next summer term

Ray Tracing

- Today: Basics of Ray Tracing
- how to generate eye rays
- how to intersect a ray with scene geometry
- a first ray caster
- Next Lectures:
- how to generate secondary rays
- recursive ray tracing procedure
- accelerations structures for fast ray tracing
- special effects possible with ray tracing

Rays

- Mathematical representation of an (eye) ray
- Parametric line from ray origin (eye) e in direction d

$$
p(t)=e+t d
$$

- $p(0)=e$
- $0<t_{1}<t_{2} \Rightarrow p\left(t_{1}\right)$ closer to the eye than $p\left(t_{2}\right)$
- $t<0 \Rightarrow p(t)$ behind the eye
- Ray test:
- find intersection of ray with scene with smallest $t>0$

Eye Ray Generation

- Every eye ray belongs to one pixel
- Starting point of eye ray: camera
- Eye ray goes through pixel on image plane

- For a particular pixel p, the eye ray is:
$e=$ camera position $d=(p-e) /||p-e||$
- Intersection with objects: gather t -values with $t>0$
- Smallest $t \Rightarrow$ first intersection \Rightarrow visible object

Eye Ray Generation

- Remember from Lecture \#07: Viewing and Perspective Given camera position, view direction and up-vector \rightarrow compute camera basis vectors u, v, w

- Use this to generate an image plane:

$$
e+w+x u+y v
$$

Eye Ray Generation

- Point (x, y) on image plane:

$$
e+w+x u+y v
$$

- Using the field of view fovy and aspect ratio aspect, a window is defined on the image plane:

$$
\begin{aligned}
& \quad(x, y) \in\left[-x_{m}, x_{m}\right] \times\left[-y_{m}, y_{m}\right] \\
& \text { with } y_{m}=\tan \frac{\text { fovy }}{2}, x_{m}=\text { aspect } y_{m}
\end{aligned}
$$

- Finally, we map integer pixel coordinates (i, j) to this window:

$$
x=\underbrace{\left(\frac{i+0.5}{n_{x}} \times 2-1\right) x_{m,} \quad y \text { analog }}_{\begin{array}{c}
\text { relative } \\
\text { coordinate }
\end{array}} \begin{gathered}
\text { number of } \\
\text { pixels in } x
\end{gathered}
$$

Eye Ray Generation

- Eye ray computation:
- compute (u, v, w) for camera frame
- for pixel (i, j) : eye ray is $e+t d$ with
$e=$ camera position

$$
\begin{gathered}
x=\left(\frac{i+0.5}{n_{x}} \times 2-1\right) \times \text { aspect } \times \tan \frac{\text { fovy }}{2} \text { and } \\
\qquad \begin{array}{c}
y=\left(\frac{j+0.5}{n_{y}} \times 2-1\right) \times \tan \frac{f o v y}{2} \\
d=\frac{w+x u+y v}{\|w+x u+y v\|}
\end{array}
\end{gathered}
$$

- Corresponds to pinhole camera with planar projection plane

Eye Rays: Other Camera Models

- In ray tracing, we can easily handle camera types other than projective pinhole cameras, e.g. panoramic cameras, fish eye lenses, or similar
- Example: panoramic camera
- eye rays through grid on surrounding cylinder

By Nickj (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0) or GFDL (http://www.gnu.org/copyleft/fdl.html)], via Wikimedia Commons

Eye Rays: Other Camera Models

- Kolb et al.: "A Realistic Camera Model for Computer Graphics"
- Simulate entire lens system to mimic real cinematic lenses

200mm tele

Eye Rays: Antialiasing

- Simple Anti-Aliasing: shoot multiple eye rays through pixel
- jitter eye rays over pixel
\rightarrow smoothing of edges
\rightarrow multiple texture samples
\rightarrow high impact on performance

Eye Rays: Antialiasing

- Sample patterns

uniform:

- very uniform distribution
- good numerical properties
- only square numbers as sample numbers

random:

- non-uniform distribution
- worse numerical properties
- arbitrary sample numbers, incrementable

random stratified:

- uniform distribution
- good numerical properties
- only square numbers as sample numbers

Eye Rays: Adaptive Sampling

- Adaptive Sampling: try to reduce number of eye rays \rightarrow don't cast multiple rays per pixel, if color in pixel uniform
- cast eye rays through pixel grid
 corners
- if color for one pixel vary strongly (by more than a threshold), subdivide corresponding cells and cast additional rays
- stop for tiny subpixels
- average results for each pixel

Eye Rays: Depth of Field

- Real-world lenses have a focus plane
- Objects out of this plane get blurry

[Jason Waltman / jasonwaltman.com]
- We can also simulate Depth of Field by jittering eye rays

Eye Rays: Depth of Field

- For each pixel, cast multiple rays, jitter starting point of ray around optical center (= pinhole)
- all rays of one pixel must intersect at focus plane
- average over rays per pixel \rightarrow depth of field effect

focus plane

[Jason Waltman / jasonwaltman.com]

Ray - Object Intersection

- Does a given ray $e+t d$ intersect a scene object ? And if so, where and at which ray parameter t ?
- Today we look at triangles, polygons, and spheres

Ray - Object Intersection

- Planes and plane equations
- Normal of a plane through points A, B, C

$$
n=(B-A) \times(C-A) /\|(B-A) \times(C-A)\|
$$

- plane equation, point-normal form

$$
n \circ(x-A)=0
$$

- constant-normal form

$$
n \circ x=s \quad(=\mathrm{n} \circ A=n \circ B=n \circ C)
$$

- s is the distance of the plane to the origin

Ray - Plane intersection

- Parametric representation of a ray

$$
p(t)=e+t d,\|d\|=1
$$

- Plane equation

$$
n \circ x=s
$$

$\Rightarrow n \circ p(t)=s \rightarrow t=\frac{s-n \circ e}{n \circ d} \rightarrow q=e+t d$

- Notes:
- if $n \circ d=0$, the ray is parallel to the plane
- if $t<0$, the intersection is "behind" the starting point e

Ray - Triangle intersection

- First intersect with plane supported by triangle, then check whether intersection point is inside triangle
- Many algorithms exist for this problem
- Simple approach: use barycentric coordinates to describe intersection point
- System of equations:

$$
e+t d=a+\beta(b-a)+\gamma(c-a)
$$

(barycentric coordinate α replaced by $1-\beta-\gamma$)

- Unknowns: t, β, γ
- Intersection at $q=e+t d$ if
- $t>0$ (q on positive part of ray)
- $\beta \geq 0, \gamma \geq 0, \alpha \geq 0 \Leftrightarrow \beta+\gamma \leq 1$ (q within triangle)

Ray - Triangle Intersection

- Solve $e+t d=a+\beta(b-a)+\gamma(c-a)$:

$$
\underbrace{\left(\begin{array}{ccc}
\vdots & \vdots & \vdots \\
d & a-b & a-c \\
\vdots & \vdots & \vdots
\end{array}\right)}_{A}\left(\begin{array}{c}
t \\
\beta \\
\gamma
\end{array}\right)=\left(\begin{array}{c}
\vdots \\
a-e \\
\vdots
\end{array}\right)
$$

Ray - Triangle intersection

- Solve using Cramer's rule:
- $t=\operatorname{det}\left(\begin{array}{ccc}\vdots & \vdots & \vdots \\ a-e & a-b & a-c \\ \vdots & \vdots & \vdots\end{array}\right) / \operatorname{det} A$
$\begin{aligned} & \text { - } \beta \beta \operatorname{det}\left(\begin{array}{ccc}\vdots & \vdots & \vdots \\ d & a-e & a-c \\ \vdots & \vdots & \vdots\end{array}\right) / \operatorname{det} A \\ & \text { - } \gamma=\operatorname{det}\left(\begin{array}{ccc}\vdots & \vdots & \vdots \\ d & a-b & a-e \\ \vdots & \vdots & \vdots\end{array}\right) / \operatorname{det} A\end{aligned}$
- If $\operatorname{det} A=0$, then
- The triangle is degenerate (a line or a point) or
- The ray is parallel to the triangle

Ray - Triangle intersection

```
Boolean raytri (ray r, point3 a, point3 b, point3 c,
                        interval[t0,t1])
    compute t
    if (t < t0) or (t > t1) then
        return false
    compute det(A)
    if det(A) == 0 // border case. no intersection
        return false
    compute }
    if ( }\gamma<0\mathrm{ ) or ( }\gamma>1)\mathrm{ then
        return false
    compute }
    if ( 
        return false
    if ( }\beta+\gamma>1) the
        return false
    else
        return true
```


Ray - Triangle intersection

- Optimized implementation:
- first, use $\operatorname{det}(a, b, c)=a \circ(b \times c)=b \circ(c \times a)=c \circ(a \times b)$
- so in our case:
- normal $n=(b-a) \times(c-a) \quad$ (not normalized)
- $\operatorname{det} A=d \circ n$
- $t=\frac{\operatorname{det}(a-e, a-b, a-c)}{\operatorname{det} A}=\frac{(a-e) \circ n}{\operatorname{det} A}$
- $\beta=\frac{\operatorname{det}(d, a-e, a-c)}{\operatorname{det} A}=\frac{(\mathrm{a}-\mathrm{c}) \circ(d \times(a-e))}{\operatorname{det} \mathrm{A}}$
- $\gamma=\frac{\operatorname{det}(d, a-b, a-e)}{\operatorname{det} A}=-\frac{(a-b) \circ(d \times(a-e))}{\operatorname{det} A}$

Ray - Triangle intersection

- These optimizations are used in the following code
- Note: ray is parameterized by two points (p, q), so $e=p$ and $d=q-p$

```
// Given ray pq and triangle abc, returns whether ray intersects
// triangle and if so, also returns the barycentric coordinates (u,v,w)
// of the intersection point
int IntersectSegmentTriangle(Point p, Point q, Point a, Point b, Point c,
                                    float &u, float &v, float &w, float &t)
{
    Vector ab = b - a;
    Vector ac = c - a;
    Vector qp = p - q;
    // Compute triangle normal. Can be precalculated or cached if
    // intersecting multiple segments against the same triangle
    Vector n = Cross(ab, ac);
    // Compute denominator d.
    float d = Dot(qp, n);
    // If d == 0, ray is parallel to triangle or triangle is degenerate
    if (fabs(d) < 1e-10) return 0;
```


Ray - Triangle intersection

```
    // Compute intersection t value of pq with plane of triangle.
    // A ray intersects iff 0 <= t.
    // Delay dividing by d until intersection has been found
    Vector ap = p - a;
    t = Dot(ap, n);
    if (t < O.Of) return 0;
    // Compute barycentric coordinate components and test if within bounds
    Vector e = Cross(qp, ap);
    v = Dot(ac, e);
    if (v < O.Of || v > d) return 0;
    w = - Dot(ab, e);
    if (w < 0.0f || v + w > d) return 0;
    // Segment/ray intersects triangle. Perform delayed division and
    // compute the last barycentric coordinate component
    float ood = 1.0f / d;
    t *= ood;
    v *= ood;
    w *= ood;
    u = 1.0f - v - w;
    return 1;
}
```


Ray - Triangle intersection

- Interpretation of ray-triangle intersection test [Möller,Trumbore]
- Transform to new coordinate system (described by matrix A) from two triangle edges and ray direction
- then $t=e_{z}, \beta=b_{x}, \gamma=c_{y}$

Ray - Polygon Intersection

- Given a planar polygon with
- m vertices p_{1} through p_{m}
- All on a plane with normal n

1. compute intersection p of ray with the plane containing the polygon
2. test if p is within the polygon

Ray - Polygon Intersection

1. Ray Polygon Intersection

- Ray $e+t d$
- Compute intersection with plane containing polygon

$$
p=e+\frac{\left(p_{1}-e\right) \circ n}{d \circ n} d
$$

2. Test if p lies in polygon

- Simple solution:

Project polygon and p onto the coordinate plane with the largest projection.

- Then do 2D inside-outside test

In this example, we project the triangle on to the $x y$-plane because the normal has maximal component in z

Ray - Polygon Intersection

- Two different cases:
- Polygon is convex \rightarrow simple edge tests possible
- Polygon is non-convex \rightarrow more complicated in/out test needed

Ray - Polygon Intersection

- Convex polytopes (polyhedra)
- A polyhedron (convex polygon in 2D) can be described as the intersection of a set of half spaces
- a point x is inside the polyhedron, if it is within all the half spaces

$$
\begin{aligned}
& n_{1} \circ x-d_{1}>0 \\
& n_{2} \circ x-d_{2}>0 \\
& n_{3} \circ x-d_{3}>0
\end{aligned}
$$

- \rightarrow Lecture "Rasterization"
- Inside - Outside test for convex polygons
- convert edges to half space representation
- check point for all half spaces
\rightarrow as soon as one fails, point is outside
\rightarrow if none fails, point is inside
- ideally: half space vectors stored with triangle
\rightarrow fast, but consumes memory

Ray - Polygon Intersection

- For non-convex polygons, the previous test is not correct \rightarrow example ?
- General polygon inside-outside test
- Generate ray from point in arbitrary direction
- Count intersections with polygon boundary
- Even \rightarrow outside
- Odd \rightarrow inside

Ray - Polygon Intersection

- Polygon inside-outside test
- Problem: ray hits one vertex
\rightarrow should it count twice or once?
- in the example on the right, the upper ray should count two intersections, the lower one only one...
- Simple robust solution:

If such a boundary case is detected, use other ray with new direction

Ray - Sphere Intersection

- Implicit surface equation $f(x)=0$
- Example: sphere with center c and radius r :

$$
(x-c) \circ(x-c)-r^{2}=0
$$

- Set the ray in the implicit equation and find t and the intersection point p, if possible
$f(p(t))=0 \Rightarrow$ ray parameter t

Ray - Sphere Intersection

- Intersection with ray $p(t)=e+t d$:

$$
(e+t d-c) \circ(e+t d-c)-r^{2}=0
$$

- Results in quadratic equation

$$
(d \circ d) t^{2}+2 d \circ(e-c) t+(e-c) \circ(e-c)-r^{2}=0
$$

- Since $(d \circ d)=1$:

$$
t=\frac{-b \pm \sqrt{b^{2}-4 c}}{2}
$$

with $b=2 d \circ(e-c)$ and $c=(e-c) \circ(e-c)-r^{2}$

Ray - Sphere Intersection

- Meaning of the discriminant $b^{2}-4 c$
- If negative \rightarrow no intersection
- If positive \rightarrow two intersections
- where ray enters the sphere
- where ray leaves the sphere

- If zero \rightarrow ray touches sphere at exactly one point
- Always check discriminant first!
- sphere-ray intersection very fast: discriminant alone tells us, whether there is an intersection
\rightarrow use sphere as bounding object for more complex objects

Other Intersection Tests

- Similar tests available for
- ellipsoids
- cylinders
- cones
- tori
- boxes

Ray Casting

- Up to now, we have the following:
for each pixel p in image plane
generate eye ray (e, d) through pixel p
tmin = infinity; omin = null;
for each scene object o
t = intersect ray (e,d) with object o
just learned
if ray intersects object and t < tmin
tmin = t;
omin = o;
if omin ! = null
compute lighting at hit point on object omin

just learned

 set p to this colorelse
set p to background color

Ray Casting - Lighting

- How to do the lighting at a found hit point?
- \rightarrow we need the hit point, its surface normal, maybe texture coordinates etc.
- For a triangle, these can be interpolated from the vertices
- Typically, this information is stored in a Hit-Object

```
struct Hit {
    float t; // ray parameter
    Obj *obj; // hit scene object
    float alpha,beta,gamma; // barycentric coordinates
    vec3 getPosition() { ... }
    vec3 getNormal() { ... }
    vec2 getTexCoord() { ... }
}
Hit Scene::intersect(Ray &ray) { ... }
```


Ray Casting - Lighting

- new version

```
for each pixel p in image plane
    Ray ray = camera->getEyeRay(p);
    Hit closestHit = null;
    for each scene object o
        Hit hit = o.intersect(ray);
        if closestHit == null || hit.t < closestHit.t
        closestHit = hit;
    if closestHit != null
        c = closestHit.obj.shader.computeLighting(
                        closestHit.getPos(),
                closestHit.getNormal(),
                ...);
        setPixelColor(p,c);
    else
        setPixelColor(p,backgroundColor);
```


Ray Casting

- Up to now, we generate exactly the same images as with a rasterizer...
- But with much more effort:
- n : number of objects (millions)
- m: number of pixels (millions)
- Intersecting one ray with all objects is $O(n)$
- Generating the image is then $O(\mathrm{mn}) \rightarrow$ impractical
- compare: rasterizer is $O(m+n)$ (for constant depth complexity)
- Next lectures:
- how we can simulate new nice effects with ray tracing
- how we can compute ray intersections in $O(\log n)$?

