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• Occlusion
• Essential in 3D graphics

• How to create occlusion correctly?
• Painter’s Algorithm
• Z-Buffer
• Ray tracing (after Christmas)
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• Painter’s Algorithm
• Sort objects from back to front
• Render them in this order

• front objects draw over back objects
• Very expensive, e.g. sorting of 1 million triangles!
• Cannot handle 

• Penetration Cyclic occlusion
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Occlusion
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• Z-coordinates of 3D primitives equal depth values
• after normalization → z-values are from unit interval [−1,1]

• Interpolate depth value during rasterization, i.e. per pixel depth
• just as colors for Gouraud-shading

• Z-Buffer
• buffer with same size as image.
• Stores depth of currently closest object visible through this pixel
• Occlusion by simple depth test (𝑧𝑧 at pixel (𝑥𝑥,𝑦𝑦)) → can be implemented in hardware

• Demo z-Buffer:
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Z-Buffer

setpixel(x,y,depth,color)
if(zBuffer(x,y) > depth)

screen(x,y) := color
zBuffer(x,y) := depth

endif
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z-Buffer Demo
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• “Depth” is z-value after normalization ⇒ 𝑧𝑧 ∈ [−1,1]
• Projective mapping maps lines to lines

→ triangles mapped to triangles by normalization
(unless triangle intersects 𝑧𝑧 = 0 → problems with clipping after 
normalization)

• non-perspective interpolation of z-values
• Precision of z-values in z-buffer important

• depth values mostly close to 1 (comes from perspective mapping)
• differences in depth become small for distant objects 
• choose n reasonably large
• at least 24 bit integer or 32 bit float needed  
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Z-Buffer
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• Tricks: Hidden-Line-Rendering ↔ Wireframe Rendering

• render polygons to depth buffer only in 1st pass
• render outlines in 2nd pass and use contents of depth buffer from 1st pass
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Z-Buffer
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• Problem: “z-buffer fighting”
• Pixels from 2nd pass exactly on surface from 1st pass.
• Effects of rounding 
• Some pixels in 2nd pass occluded

• Solution
• Move outline towards camera by some delta (or move polygon away from camera)
• Careful choice of delta required to avoid unwanted additional occlusion effects
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Z-Buffer
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Z-Buffer

wireframe hidden line with 
polygon offset

Z-fighting problem

polygon and polygon outline 
with polygon offset
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• Tricks: Haloing

• Algorithm
• Render thick outlines to depth buffer only in 1st pass
• Render lines again in normal thickness with offset
• Invisible thick lines hide back lines
• Gaps occur
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Z-Buffer

front

back

Gaps for crossing 
lines
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Back Face Culling

• For solid objects, every surface triangle has an outer side and an inner side
• Front facing triangle: triangle, of which we see the outer side
• Back facing triangle: non-front facing triangle
• We cannot see back facing triangles (unless we are inside the object)
• But: also front-facing triangles can be occluded (partially or completely)

• → Back face culling: remove such backfacing faces

backfacing

frontfacing,
yet occluded

frontfacing,
yet partially occluded
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Back Face Culling

• How can we decide per triangle whether it is back facing ?
• Version 1 (world space)

• assign a normal 𝑁𝑁 to each face, pointing outwards
• render triangle, only iff 𝑉𝑉 ∘ 𝑁𝑁 > 0
• problem: often 𝑁𝑁 is not known,

but only the lighting normal per vertex

𝑉𝑉

𝑁𝑁
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Back Face Culling

• How can we decide per triangle whether it is back facing ?
• Version 2 (screen space)

• orient vertices
• when looking from the outside, order vertices counterclockwise

• when projected to screen space
• if also counterclockwise in screen space → front face → render
• if orientation changes → back face → cull

a b

c

b a

c

counterclockwise
orientation

clockwise
orientation
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Back Face Culling

• how do we test orientation?
• Vector product defines orientation

• given: 3D-vectors p,q
• r = p x q:

• r perpendicular to p and q
• p,q and r are “right handed”

• Use this to test orientation of 2D points a,b,c
• lift to 3D:
• a → (a1,a2,0), b,c analog
• p = b – a, q = c - a
• compute p x q
• a,b,c counterclockwise
⇔ (p x q)z > 0

r = middle finger

p = thumb

q = index finger

a

c

bp

q
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Back Face Culling

• supported by OpenGL:
• // front faces: counter clock wise
glFrontFace(GL_CCW);
// cull back faces
glCullFace(GL_BACK);
// back face culling on
glEnable(GL_CULL_FACE);

• Does not replace visibility test!
• It just quickly sorts out 50% of the triangles before rasterization!
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Culling Demo
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• Transparency
• Technique: Blending
• During rendering, new pixels do not overwrite previous ones but the values are 

“blended”

• α-Blending
• pixel: = (1 − 𝛼𝛼) · 𝑜𝑜𝑜𝑜𝑜𝑜 + 𝛼𝛼 · 𝑛𝑛𝑛𝑛𝑛𝑛

• Allows drawing of semitransparent objects
• α = 0.5 ⇒ pixel := ½ old + ½ new ⇒ half transparent objects
• α is not transparency but “opacity” = 1 − transparency 
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Transparency
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• α is often 4th color component ⇒ RGBA instead of RGB
• (1, 0, 0, 0.1) ⇒ very transparent red
• 𝛼𝛼 = 1 corresponds to opaque rendering

• (0, 1, 0, 1) ⇒ opaque green (transparency == 0)                   
• pixel := 0·old + 1·new = new ⇒ overwrite 

• α-blending is not commutative
• Results change depending on order of blending
• Rendering without sorting leads to wrong results
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Transparency

50% red over
50% green over

100% white

50% green over
50% red over
100% white
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Transparency

• Problem: z-Buffer + Transparent objects
• Example: render 2 semitransparent spheres (1 in front of 2) using α-blending and z-

buffer

• If 1 is drawn before 2, 1 will be opaque because z-buffer hides sphere 2
• If 2 is drawn first, the result is correct

• Z-Buffer assumes objects are opaque !

• So:
• Opaque objects should be rendered first with z-buffer
• Then, transparent objects should be rendered back-to-front
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• Simple methods to handle transparency
• Approach a) (correct)

• Do not use z-buffer at all but sort objects back to front
• Approach b) (correct)

• First render opaque objects with z-buffer 
• Then, “freeze” z-buffer (set to read-only) 
• Finally, sort transparent objects and render back to front

• Approach c) (faster, but not always correct)
• First render opaque objects
• Then, “freeze” z-buffer
• Finally, render transparent objects without sorting
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Transparency
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Handling Transparency with Depth Peeling

• Idea:
• Render scene multiple times
• At each render pass, let only fragments survive that are further away from camera 

than in previous pass
• Easy to do in fragment shader

• Single depth layers of the scene are “peeled”

• Result: Layered Depth Image (LDI) [Shade et al. 98]
• 𝑛𝑛 depth images, where 𝑛𝑛 is maximum depth complexity
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LDI:
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Handling Transparency with Depth Peeling

• Depth peeling from front to back (left to right)
• Surface: bold black lines
• Hidden surface: thin black lines
• “Peeled away” surface: light grey lines
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• Transparency can be achieved by blending these layers
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Handling Transparency with Depth Peeling

Interactive Order-Independent Transparency [Everitt 01]

Layer 0 Layer 1

Layer 2 Layer 3
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• Transparency can be achieved by blending these layers
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Handling Transparency with Depth Peeling

Interactive Order-Independent Transparency [Everitt 01]

1 layer 2 layers

3 layers 4 layers
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