
Lecture #08

Visibility, Culling, Transparency

Computer Graphics
Winter Term 2020/21

Marc Stamminger / Roberto Grosso

• Occlusion
• Essential in 3D graphics

• How to create occlusion correctly?
• Painter’s Algorithm
• Z-Buffer
• Ray tracing (after Christmas)

2

Occlusion

or

Computer Graphics 2020/21 - Visibility, Culling, Transparency

• Painter’s Algorithm
• Sort objects from back to front
• Render them in this order

• front objects draw over back objects
• Very expensive, e.g. sorting of 1 million triangles!
• Cannot handle

• Penetration Cyclic occlusion

3

Occlusion

Computer Graphics 2020/21 - Visibility, Culling, Transparency

• Z-coordinates of 3D primitives equal depth values
• after normalization → z-values are from unit interval [−1,1]

• Interpolate depth value during rasterization, i.e. per pixel depth
• just as colors for Gouraud-shading

• Z-Buffer
• buffer with same size as image.
• Stores depth of currently closest object visible through this pixel
• Occlusion by simple depth test (𝑧𝑧 at pixel (𝑥𝑥,𝑦𝑦)) → can be implemented in hardware

• Demo z-Buffer:

4

Z-Buffer

setpixel(x,y,depth,color)
if(zBuffer(x,y) > depth)

screen(x,y) := color
zBuffer(x,y) := depth

endif

Computer Graphics 2020/21 - Visibility, Culling, Transparency

z-Buffer Demo

Computer Graphics 2020/21 - Visibility, Culling, Transparency 5

Vorführender
Präsentationsnotizen
LiveSlide
https://lehre.lgdv.tf.fau.de/CG/Demos/z-Buffer.html

• “Depth” is z-value after normalization ⇒ 𝑧𝑧 ∈ [−1,1]
• Projective mapping maps lines to lines

→ triangles mapped to triangles by normalization
(unless triangle intersects 𝑧𝑧 = 0 → problems with clipping after
normalization)

• non-perspective interpolation of z-values
• Precision of z-values in z-buffer important

• depth values mostly close to 1 (comes from perspective mapping)
• differences in depth become small for distant objects
• choose n reasonably large
• at least 24 bit integer or 32 bit float needed

6

Z-Buffer

1

-1

depth

distance to camera
farnear

Computer Graphics 2020/21 - Visibility, Culling, Transparency

• Tricks: Hidden-Line-Rendering ↔ Wireframe Rendering

• render polygons to depth buffer only in 1st pass
• render outlines in 2nd pass and use contents of depth buffer from 1st pass

7

Z-Buffer

Computer Graphics 2020/21 - Visibility, Culling, Transparency

• Problem: “z-buffer fighting”
• Pixels from 2nd pass exactly on surface from 1st pass.
• Effects of rounding
• Some pixels in 2nd pass occluded

• Solution
• Move outline towards camera by some delta (or move polygon away from camera)
• Careful choice of delta required to avoid unwanted additional occlusion effects

8

Z-Buffer

Computer Graphics 2020/21 - Visibility, Culling, Transparency

Vorführender
Präsentationsnotizen
Delta genauer erklären!

9

Z-Buffer

wireframe hidden line with
polygon offset

Z-fighting problem

polygon and polygon outline
with polygon offset

Computer Graphics 2020/21 - Visibility, Culling, Transparency

• Tricks: Haloing

• Algorithm
• Render thick outlines to depth buffer only in 1st pass
• Render lines again in normal thickness with offset
• Invisible thick lines hide back lines
• Gaps occur

10

Z-Buffer

front

back

Gaps for crossing
lines

Computer Graphics 2020/21 - Visibility, Culling, Transparency

Back Face Culling

• For solid objects, every surface triangle has an outer side and an inner side
• Front facing triangle: triangle, of which we see the outer side
• Back facing triangle: non-front facing triangle
• We cannot see back facing triangles (unless we are inside the object)
• But: also front-facing triangles can be occluded (partially or completely)

• → Back face culling: remove such backfacing faces

backfacing

frontfacing,
yet occluded

frontfacing,
yet partially occluded

Computer Graphics 2020/21 - Visibility, Culling, Transparency 11

Back Face Culling

• How can we decide per triangle whether it is back facing ?
• Version 1 (world space)

• assign a normal 𝑁𝑁 to each face, pointing outwards
• render triangle, only iff 𝑉𝑉 ∘ 𝑁𝑁 > 0
• problem: often 𝑁𝑁 is not known,

but only the lighting normal per vertex

𝑉𝑉

𝑁𝑁

Computer Graphics 2020/21 - Visibility, Culling, Transparency 12

Back Face Culling

• How can we decide per triangle whether it is back facing ?
• Version 2 (screen space)

• orient vertices
• when looking from the outside, order vertices counterclockwise

• when projected to screen space
• if also counterclockwise in screen space → front face → render
• if orientation changes → back face → cull

a b

c

b a

c

counterclockwise
orientation

clockwise
orientation

Computer Graphics 2020/21 - Visibility, Culling, Transparency 13

Back Face Culling

• how do we test orientation?
• Vector product defines orientation

• given: 3D-vectors p,q
• r = p x q:

• r perpendicular to p and q
• p,q and r are “right handed”

• Use this to test orientation of 2D points a,b,c
• lift to 3D:
• a → (a1,a2,0), b,c analog
• p = b – a, q = c - a
• compute p x q
• a,b,c counterclockwise
⇔ (p x q)z > 0

r = middle finger

p = thumb

q = index finger

a

c

bp

q

Computer Graphics 2020/21 - Visibility, Culling, Transparency 14

Back Face Culling

• supported by OpenGL:
• // front faces: counter clock wise
glFrontFace(GL_CCW);
// cull back faces
glCullFace(GL_BACK);
// back face culling on
glEnable(GL_CULL_FACE);

• Does not replace visibility test!
• It just quickly sorts out 50% of the triangles before rasterization!

Computer Graphics 2020/21 - Visibility, Culling, Transparency 15

Culling Demo

Computer Graphics 2020/21 - Visibility, Culling, Transparency 16

Vorführender
Präsentationsnotizen
LiveSlide
https://lehre.lgdv.tf.fau.de/CG/Demos/z-Buffer.html

• Transparency
• Technique: Blending
• During rendering, new pixels do not overwrite previous ones but the values are

“blended”

• α-Blending
• pixel: = (1 − 𝛼𝛼) · 𝑜𝑜𝑜𝑜𝑜𝑜 + 𝛼𝛼 · 𝑛𝑛𝑛𝑛𝑛𝑛

• Allows drawing of semitransparent objects
• α = 0.5 ⇒ pixel := ½ old + ½ new ⇒ half transparent objects
• α is not transparency but “opacity” = 1 − transparency

17

Transparency

Computer Graphics 2020/21 - Visibility, Culling, Transparency

• α is often 4th color component ⇒ RGBA instead of RGB
• (1, 0, 0, 0.1) ⇒ very transparent red
• 𝛼𝛼 = 1 corresponds to opaque rendering

• (0, 1, 0, 1) ⇒ opaque green (transparency == 0)
• pixel := 0·old + 1·new = new ⇒ overwrite

• α-blending is not commutative
• Results change depending on order of blending
• Rendering without sorting leads to wrong results

18

Transparency

50% red over
50% green over

100% white

50% green over
50% red over
100% white

Computer Graphics 2020/21 - Visibility, Culling, Transparency

Transparency

• Problem: z-Buffer + Transparent objects
• Example: render 2 semitransparent spheres (1 in front of 2) using α-blending and z-

buffer

• If 1 is drawn before 2, 1 will be opaque because z-buffer hides sphere 2
• If 2 is drawn first, the result is correct

• Z-Buffer assumes objects are opaque !

• So:
• Opaque objects should be rendered first with z-buffer
• Then, transparent objects should be rendered back-to-front

19

1 2

Computer Graphics 2020/21 - Visibility, Culling, Transparency

• Simple methods to handle transparency
• Approach a) (correct)

• Do not use z-buffer at all but sort objects back to front
• Approach b) (correct)

• First render opaque objects with z-buffer
• Then, “freeze” z-buffer (set to read-only)
• Finally, sort transparent objects and render back to front

• Approach c) (faster, but not always correct)
• First render opaque objects
• Then, “freeze” z-buffer
• Finally, render transparent objects without sorting

20

Transparency

Computer Graphics 2020/21 - Visibility, Culling, Transparency

Vorführender
Präsentationsnotizen
Zeigen, dass Transparenz nicht kommutativ ist!

Handling Transparency with Depth Peeling

• Idea:
• Render scene multiple times
• At each render pass, let only fragments survive that are further away from camera

than in previous pass
• Easy to do in fragment shader

• Single depth layers of the scene are “peeled”

• Result: Layered Depth Image (LDI) [Shade et al. 98]
• 𝑛𝑛 depth images, where 𝑛𝑛 is maximum depth complexity

21

LDI:

Computer Graphics 2020/21 - Visibility, Culling, Transparency

extra slides „Depth Peeling“
not relevant for exam

Handling Transparency with Depth Peeling

• Depth peeling from front to back (left to right)
• Surface: bold black lines
• Hidden surface: thin black lines
• “Peeled away” surface: light grey lines

Computer Graphics 2020/21 - Visibility, Culling, Transparency 22

• Transparency can be achieved by blending these layers

23

Handling Transparency with Depth Peeling

Interactive Order-Independent Transparency [Everitt 01]

Layer 0 Layer 1

Layer 2 Layer 3

Computer Graphics 2020/21 - Visibility, Culling, Transparency

• Transparency can be achieved by blending these layers

24

Handling Transparency with Depth Peeling

Interactive Order-Independent Transparency [Everitt 01]

1 layer 2 layers

3 layers 4 layers

Computer Graphics 2020/21 - Visibility, Culling, Transparency

	Lecture #08���Visibility, Culling, Transparency
	Occlusion
	Occlusion
	Z-Buffer
	z-Buffer Demo
	Z-Buffer
	Z-Buffer
	Z-Buffer
	Z-Buffer
	Z-Buffer
	Back Face Culling
	Back Face Culling
	Back Face Culling
	Back Face Culling
	Back Face Culling
	Culling Demo
	Transparency
	Transparency
	Transparency
	Transparency
	Handling Transparency with Depth Peeling
	Handling Transparency with Depth Peeling
	Handling Transparency with Depth Peeling
	Handling Transparency with Depth Peeling

