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Remember: Mapping 3D to 2D

• Simple projection: parallel projection onto plane
• Affine → parallel lines remain parallel

• real perspective → point projection
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• Project scene onto image plane using point projection with camera as 
projection center
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Perspective Projection

camera
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• Strategy based on simple mathematical rule
• Project objects directly towards the eye

• Draw object where they meet a view plane in front of the eye
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Perspective Projection
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Perspective Projection

Albrecht Dürer
Der Zeichner der Laute
1512–1525

Albrecht Dürer
Der Zeichner des liegenden Weibes
1512–1525
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• Linear Perspective Projection: The pinhole camera
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Perspective Projection

“When images of illuminated objects ...
penetrate through a small hole into a very 

dark room ... you will see [on the opposite 
wall] these objects in their proper form and
color, reduced in size ... in a reversed position, 

owing to the intersection of the rays".
Da Vinci

http://www.acmi.net.au/AIC/CAMERA_OBSCURA.html (Russell Naughton)
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Perspective Projection

Source:
http://www.siggraph.org/education/materials/HyperGraph/viewing/view3d/perspect.htm

Pietro Perugino, fresco at the Sistine Chape (1481-82).
Source: http://en.wikipedia.org/wiki/Vanishing_point

Masaccio 1427, Trinitz with the Virgin, 
St. John and Donors.
First ever painting done in perspective. Canaletto 1735-45. The Piazza of San Marco, Venice.

One point perspective
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Perspective Projection

• Properties: 
• Objects appear smaller as their distance to the observer increases (foreshortening)
• Vanishing points (Fluchtpunkte): Lines parallel in world converge to a single point in 

image space (rails of a railroad)
• 1, 2 or 3-point perspective: Lines parallel to 1, 2 or 3 of the main axes converge in a 

vanishing point, the others remain parallel

• One point perspective
• the image plane is orthogonal to one of the coordinate axis and parallel to the other 

two.

• Two point perspective
• The image plane in parallel to one coordinate axis and intersect the other two.

• Three-point perspective
• The image plane intersects all three coordinate axis.
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• One-point perspective – one vanishing point
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Perspective Projection

source: http://stevewebel.com/photographer/wp-
content/uploads/2008/04/vanishing-point.jpg

source:http://cavespirit.com/CaveWall/5/vanishin
g_point_high_horizon.jpg
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• Two-point perspective – two vanishing points
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Perspective Projection

http://www.vintage-views.com/WaresModernPerspective/images/1219k6-Plate1.jpg
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• Two-point perspective – two vanishing points
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Perspective Projection

Sanaa-essen-Zollverein-School-of-Management-and-Design-220409-01.jpg
de.wikipedia.org
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Perspective Projection
• orthographic projection • perspective projection
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Perspective Projection

• How can we describe this projection?
• Look at special case:

• camera in origin
• looks into z-direction
• projection onto 𝑧𝑧 = 1 plane

•
𝑥𝑥′
𝑦𝑦′
𝑧𝑧′

=

𝑥𝑥
𝑧𝑧
𝑦𝑦
𝑧𝑧
1

• Projection is division by 𝑧𝑧 !
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(𝑥𝑥,𝑦𝑦, 𝑧𝑧)

𝑧𝑧

𝑧𝑧 = 1𝑥𝑥, 𝑦𝑦

(𝑥𝑥′,𝑦𝑦′, 𝑧𝑧′)
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Perspective Projection

• How can we handle this ?
• Remember homogeneous coordinates:

𝑥𝑥
𝑦𝑦 →

𝑥𝑥
𝑦𝑦
1

→
⋅𝐴𝐴 𝑥𝑥′

𝑦𝑦′
𝑤𝑤′

→

𝑥𝑥′

𝑤𝑤′

𝑦𝑦′

𝑤𝑤′

• 𝑤𝑤 is common divisor

• if we move 𝑧𝑧 to 𝑤𝑤, the final division will generate perspective:

𝑥𝑥
𝑦𝑦
𝑧𝑧

→

𝑥𝑥
𝑦𝑦
𝑧𝑧
1

⋅𝑀𝑀
𝑥𝑥
𝑦𝑦
𝑧𝑧
𝑧𝑧

→
𝑥𝑥/𝑧𝑧
𝑦𝑦/𝑧𝑧

1
with 𝑀𝑀 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
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Viewing and Projection

• How can we generalize all this?
→ To describe both orthogonal and perspective projection,
we consider two separate steps, both described as matrices:

• First Viewing
• defines camera position and view direction
• rigid transformation
• moves camera position to origin and aligns axes:

→ 𝑥𝑥-axis points in horizontal image direction
→ 𝑦𝑦-axis points in vertical image direction
→ 𝑧𝑧-axis points in view direction

• to get a right-handed coordinate system, often – 𝑧𝑧 is view direction

• Then Projection
• then an orthogonal or perspective projection is performed
• and a rectangular regions from the image plane mapped to the final image
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• Compute axes for viewing transformation
→ 𝑢𝑢-axis points in horizontal image direction
→ 𝑣𝑣-axis points in vertical image direction
→ 𝑤𝑤-axis points in view direction

• We define these indirectly using the following three more intuitive vectors:
• Eye position 𝑒𝑒:  location of the eye / center of the lens
• Gaze direction 𝑔𝑔: direction the viewer is looking
• View-up vector 𝑡𝑡: points upwards

→ vertical in image
→ typically (0,1,0) → “y is up” or (0,0,1) → “z is up”
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Viewing Transformation

camera

camera

𝑢𝑢

𝑣𝑣

𝑤𝑤

𝑔𝑔

𝑡𝑡
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Viewing Transformation

• Usually, we think in right-handed coordinate systems

• but 𝑢𝑢, 𝑣𝑣,𝑤𝑤 on the previous slide are left-handed

• if we want to maintain the meaning of 𝑢𝑢 and 𝑣𝑣 (right and up), we have to flip 
the 𝑧𝑧-axes and make – 𝑧𝑧 to the view direction.

• this will lead to some random
negative signs with respect to 𝑧𝑧…
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thumb =
x =
“right”

pointing finger =
y =
“up”

middle finger =
z

view direction=
-z



• Given: camera position 𝑒𝑒, view direction 𝑔𝑔 and up-vector 𝑡𝑡
• Compute new basis: origin 𝑒𝑒 and basis vectors (𝑢𝑢, 𝑣𝑣,𝑤𝑤)
• 𝑤𝑤

• points opposite to gaze direction (“-z” convention): 𝑤𝑤 = −𝑔𝑔/ 𝑔𝑔

• 𝑣𝑣
• almost the same as 𝑡𝑡, but not always
• if gaze direction is not perpendicular to 𝑡𝑡, then we have to rotate 𝑣𝑣 away from 𝑡𝑡
• 𝑣𝑣, 𝑡𝑡, and 𝑔𝑔 should be in one plane
• simple solution: first compute 𝑢𝑢, then 𝑣𝑣

• 𝑢𝑢
• should be perpendicular to both g and t:

𝑢𝑢 =
𝑡𝑡 × 𝑤𝑤
𝑡𝑡 × 𝑤𝑤

• then 𝑣𝑣 is perpendicular to both 𝑢𝑢 and 𝑤𝑤:
v = w × 𝑢𝑢
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Viewing Transformation

𝑔𝑔

w = −𝑔𝑔

𝑡𝑡

.

𝑣𝑣

. .

≠ 90°

𝑢𝑢
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• Given: camera position 𝑒𝑒, look-at point 𝑎𝑎 and up-vector 𝑡𝑡
• Recipe

• 𝑔𝑔 = 𝑎𝑎 − 𝑒𝑒
• 𝑤𝑤 = −𝑔𝑔/ 𝑔𝑔
• 𝑢𝑢 = 𝑡𝑡×𝑤𝑤

𝑡𝑡×𝑤𝑤

• v = w × 𝑢𝑢
• The viewing transformation is then

(see intro slides; 𝑢𝑢, 𝑣𝑣,𝑤𝑤 are orthonormal):

• 𝑅𝑅 =
𝑢𝑢𝑥𝑥 𝑣𝑣𝑥𝑥 𝑤𝑤𝑥𝑥
𝑢𝑢𝑦𝑦 𝑣𝑣𝑦𝑦 𝑤𝑤𝑦𝑦
𝑢𝑢𝑧𝑧 𝑣𝑣𝑧𝑧 𝑤𝑤𝑧𝑧

e =
𝑒𝑒𝑥𝑥
𝑒𝑒𝑦𝑦
𝑒𝑒𝑧𝑧

• 𝑀𝑀𝑣𝑣 =

⋮
𝑅𝑅𝑇𝑇 −𝑅𝑅𝑇𝑇𝑒𝑒

⋮
0 0 0 1

=

𝑢𝑢𝑥𝑥 𝑢𝑢𝑦𝑦 𝑢𝑢𝑧𝑧 −𝑢𝑢𝑇𝑇𝑒𝑒
𝑣𝑣𝑥𝑥 𝑣𝑣𝑦𝑦 𝑣𝑣𝑧𝑧 −𝑣𝑣𝑇𝑇𝑒𝑒
𝑤𝑤𝑥𝑥 𝑤𝑤𝑦𝑦 𝑤𝑤𝑧𝑧 −𝑤𝑤𝑇𝑇𝑒𝑒
0 0 0 1
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Viewing Transformation
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Viewing → Projection

• When the coordinates are aligned
with the camera, we have a
much simpler situation:
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−𝑧𝑧

𝑥𝑥

𝑦𝑦 −𝑧𝑧

𝑥𝑥

𝑦𝑦

−𝑧𝑧

𝑥𝑥

𝑦𝑦

orthogonal
projection

perspective
projection
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Orthogonal Projection

• Projection onto image plane 𝑧𝑧 = 0:

𝑀𝑀 =

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

• This way, 𝑧𝑧 (=depth) gets lost…

• so we keep 𝑧𝑧:

𝑀𝑀𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑜 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

= 𝐼𝐼
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Perspective Projection

• For a perspective projection, we use the 𝑧𝑧 = 1 image plane

𝑀𝑀 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0

• Again, 𝑧𝑧 gets lost (𝑧𝑧𝑧 = 𝑧𝑧/𝑧𝑧 = 1)
• We thus use:

𝑀𝑀𝑝𝑝𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑣𝑣𝑝𝑝 =

1 0 0 0
0 1 0 0
0 0 1 −1
0 0 1 0

• now 𝑧𝑧 → 𝑧𝑧−1
𝑧𝑧

= 1 − 1
𝑧𝑧

• new depth not linear in 𝑧𝑧, but order is maintained
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Perspective Projection

• Perspective matrix maps infinite view frustum to a box !
• after this mapping, (𝑥𝑥,𝑦𝑦) are image coordinates and 𝑧𝑧 is depth
• 𝑧𝑧 has non-linear to depth
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−𝑧𝑧

𝑥𝑥

𝑦𝑦

−𝑧𝑧

𝑥𝑥

𝑦𝑦

𝑧𝑧 = 1 𝑧𝑧 = 1 → 𝑧𝑧 = 0 𝑧𝑧 = ∞ → 𝑧𝑧 = 1
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Cropping

• After projection (both orthogonal and perspective)
• x and y are image coordinates, z is depth

• Finally, we have to define
• which window of this image plane becomes our final image
• this image is a rectangular interval 𝑥𝑥𝑚𝑚𝑝𝑝𝑚𝑚, 𝑥𝑥𝑚𝑚𝑚𝑚𝑥𝑥 × 𝑦𝑦𝑚𝑚𝑝𝑝𝑚𝑚,𝑦𝑦𝑚𝑚𝑚𝑚𝑥𝑥
• usually: 𝑥𝑥𝑚𝑚𝑝𝑝𝑚𝑚 = −𝑥𝑥𝑚𝑚𝑚𝑚𝑥𝑥, 𝑦𝑦𝑚𝑚𝑝𝑝𝑚𝑚 = −𝑦𝑦𝑚𝑚𝑚𝑚𝑥𝑥
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−𝑧𝑧

𝑥𝑥

𝑦𝑦

𝑥𝑥
𝑚𝑚
𝑝𝑝𝑚𝑚

𝑥𝑥
𝑚𝑚
𝑚𝑚𝑥𝑥

−𝑧𝑧

𝑥𝑥

𝑦𝑦

𝑥𝑥
𝑚𝑚
𝑝𝑝𝑚𝑚 𝑥𝑥
𝑚𝑚
𝑚𝑚𝑥𝑥
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Cropping

• to this end, we map 𝑥𝑥𝑚𝑚𝑝𝑝𝑚𝑚, 𝑥𝑥𝑚𝑚𝑚𝑚𝑥𝑥 × 𝑦𝑦𝑚𝑚𝑝𝑝𝑚𝑚,𝑦𝑦𝑚𝑚𝑚𝑚𝑥𝑥 to −1,1 2 :

𝑀𝑀𝑝𝑝 =

2
𝑥𝑥𝑚𝑚𝑚𝑚𝑥𝑥 − 𝑥𝑥𝑚𝑚𝑝𝑝𝑚𝑚

0 0 −
𝑥𝑥𝑚𝑚𝑚𝑚𝑥𝑥 + 𝑥𝑥𝑚𝑚𝑝𝑝𝑚𝑚
𝑥𝑥𝑚𝑚𝑚𝑚𝑥𝑥 − 𝑥𝑥𝑚𝑚𝑝𝑝𝑚𝑚

0
2

𝑥𝑥𝑚𝑚𝑚𝑚𝑥𝑥 − 𝑥𝑥𝑚𝑚𝑝𝑝𝑚𝑚
0 −

𝑦𝑦𝑚𝑚𝑚𝑚𝑥𝑥 + 𝑦𝑦𝑚𝑚𝑝𝑝𝑚𝑚
𝑥𝑥𝑚𝑚𝑚𝑚𝑥𝑥 − 𝑥𝑥𝑚𝑚𝑝𝑝𝑚𝑚

0 0 1 0
0 0 0 1
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Depth Normalization

• finally, we also want to normalize depth to be in [−1,1]
• we define a near plane and a far plane: 𝑧𝑧 = −𝑧𝑧𝑚𝑚𝑝𝑝𝑚𝑚𝑜𝑜 and 𝑧𝑧 = −𝑧𝑧𝑓𝑓𝑚𝑚𝑜𝑜

(remember: „-z“-convention)

• linear mapping on 𝑧𝑧, such that 𝑧𝑧𝑚𝑚𝑝𝑝𝑚𝑚𝑜𝑜 → −1 and 𝑧𝑧𝑓𝑓𝑚𝑚𝑜𝑜 → 1:

𝑀𝑀𝑝𝑝 =

1 0 0 0
0 1 0 0
0 0 𝐴𝐴 𝐵𝐵
0 0 0 1

• choose 𝐴𝐴 and 𝐵𝐵, such that
• 𝑧𝑧 = −𝑛𝑛 gets mapped to 𝑧𝑧 = −1 and
• 𝑧𝑧 = −𝑓𝑓 gets mapped to 𝑧𝑧 = 1

• → 𝐴𝐴 = −𝑓𝑓+𝑚𝑚
𝑓𝑓−𝑚𝑚

,𝐵𝐵 = − 2𝑓𝑓𝑚𝑚
𝑓𝑓−𝑚𝑚
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WebGL: Orthogonal Projection Matrix

• Standard projection, cropping, and depth normalizationare merged to a 
single matrix, called the Projection Matrix

• Orthogonal Projection:
The image window is defined by (𝑙𝑙, 𝑟𝑟, 𝑏𝑏, 𝑡𝑡) (left,right,bottom,top) and the 
depth range by 𝑛𝑛 and 𝑓𝑓

• 𝑀𝑀𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑜(𝑙𝑙, 𝑟𝑟, 𝑏𝑏, 𝑡𝑡,𝑛𝑛, 𝑓𝑓) =

2
𝑜𝑜−𝑙𝑙

0 0 − 𝑜𝑜+𝑙𝑙
𝑜𝑜−𝑙𝑙

0 2
𝑡𝑡−𝑏𝑏

0 − 𝑡𝑡+𝑏𝑏
𝑡𝑡−𝑏𝑏

0 0 2
𝑚𝑚−𝑓𝑓

− 𝑓𝑓+𝑚𝑚
𝑓𝑓−𝑚𝑚

0 0 0 1
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x

y
z

(𝑙𝑙, 𝑏𝑏,𝑛𝑛)

(𝑟𝑟, 𝑡𝑡, 𝑓𝑓)
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WebGL: Perspective Projection Matrix

• Perspective Projection:
The depth range goes from 𝑛𝑛 to 𝑓𝑓 (near to far), and the image window 
(𝑙𝑙, 𝑟𝑟, 𝑏𝑏, 𝑡𝑡) is defined on the near-plane

• 𝑀𝑀𝑝𝑝𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑣𝑣𝑝𝑝(𝑙𝑙, 𝑟𝑟, 𝑏𝑏, 𝑡𝑡,𝑛𝑛, 𝑓𝑓) =

2𝑚𝑚
𝑜𝑜−𝑙𝑙 0 𝑙𝑙+𝑜𝑜

𝑜𝑜−𝑙𝑙 0
0 2𝑚𝑚

𝑡𝑡−𝑏𝑏
𝑏𝑏+𝑡𝑡
𝑡𝑡−𝑏𝑏 0

0 0 −𝑓𝑓+𝑚𝑚
𝑓𝑓−𝑚𝑚 − 2𝑓𝑓𝑚𝑚

𝑓𝑓−𝑚𝑚
0 0 −1 0
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x

y

z (𝑙𝑙, 𝑏𝑏,𝑛𝑛)

(𝑟𝑟, 𝑡𝑡,𝑛𝑛)
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WebGL: Perspective Projection Matrix

• Perspective Matrix usually defined by
• opening angle in y-direction: field of view in 𝑦𝑦 → 𝑓𝑓𝑓𝑓𝑣𝑣𝑦𝑦
• aspect ratio: ration of width over height → 𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎𝑡𝑡
• near and far plane → 𝑛𝑛, 𝑓𝑓

• −𝑙𝑙 = 𝑟𝑟 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎𝑡𝑡 ⋅ 𝑛𝑛 ⋅ tan fovy
2

• −𝑏𝑏 = 𝑡𝑡 = 𝑛𝑛 ⋅ tan 𝑓𝑓𝑜𝑜𝑣𝑣𝑦𝑦
2

• Large field of view corresponds to a wide angle lens, small field of view to a 
tele lens
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x

y

z

field of view
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Projection of View Frusta

• The projection matrices transform the orthogonal and perspective view 
frustum into the canonical view frustum −𝟏𝟏,𝟏𝟏 𝟑𝟑

30

x

y
z

x

y

z
(-1

,-1
,-1

) (1
,1

,1
)

x

z

y

perspective matrix
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Demo Viewing and Perspective
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Normalizing Transformation

• The perspective matrix transforms the view frustum to the unit cube

• We also call this the Normalizing Transformation

• It belongs to the class of Projective Transformations
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• The perspective matrix transform the view frustum to the unit cube

• Regions close to observer are enlarged, distant regions are shrunk
⇒ perspective distortion

33

Normalizing Transformation
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• homogenous coordinates allows us to represent points at infinity:
lim(x, y, z, w)

𝑤𝑤→0
= point at infinity in direction 𝑥𝑥,𝑦𝑦, 𝑧𝑧

→ points at infinity = directions = 𝑥𝑥,𝑦𝑦, 𝑧𝑧, 0
• A projective matrix can map such infinity points (𝑥𝑥,𝑦𝑦, 𝑧𝑧, 0) to finite points 

(𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝑤𝑤), 𝑤𝑤 ≠ 0 and vice versa !
• Intersection of parallel lines = point at infinity = direction of these lines

gets mapped to finite point and vice versa
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Normalizing Transformation
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Normalizing Transformation

• Properties:
• lines remain lines
• parallel lines don’t remain parallel
• ratios are not preserved
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• How to choose near and far planes: Nonlinear mapping of z:

𝑧𝑧 →
𝑛𝑛 + 𝑓𝑓
𝑓𝑓 − 𝑛𝑛

−
2𝑛𝑛𝑓𝑓
𝑓𝑓 − 𝑛𝑛 𝑧𝑧

• 𝑧𝑧-buffer with low resolution
• Objects at far distance collapse
• Drawing will fail sorting far objects due to insufficient resolution, z-fighting.
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Normalizing Transformation
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(-1,-1)
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Normalizing Transformation

• Objects at far distance collapse

37

near

far

≈ near ≈ 2 near far
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Normalizing Transformation

• choose reasonable near!

• resonable near

• too small near
→ z-values very close
→ depth order can get lost
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• 𝑧𝑧 → 𝑚𝑚+𝑓𝑓
𝑓𝑓−𝑚𝑚

− 2𝑚𝑚𝑓𝑓
𝑓𝑓−𝑚𝑚 𝑧𝑧

• If 𝑧𝑧 is between planes n and f, it is mapped to  [−1,1]
• If 𝑧𝑧 is between 0 and 𝑛𝑛, i.e. between camera and near plane, it is mapped to the 

interval [−∞,−1]
• If 𝑧𝑧 is positive, i.e. behind the camera, then it remains positive after mapping.
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Normalizing Transformation

non linear relation
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• Transformations in a pipeline
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Pipeline

Viewing Normali-
zation Viewport
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 Volum
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Screen Space
Pixel C
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we don’t care
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• additionally, we add a model transformation
• this maps the local coordinates of an object to the world
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Pipeline

Viewing Normali-
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Viewing Transformation

• several coordinate systems

42

Modeling
Transformation

Viewing
Transformation

Normalization

Viewport
Transformation

3D object/model coords

3D world coords

3D camera coords

3D normalized coords

Pixel coords + z-value

Affine transformation

Affine transformation

Projective transformation

Affine transformation
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All together

• 𝑒𝑒𝑦𝑦𝑒𝑒,𝑎𝑎𝑡𝑡,𝑢𝑢𝑎𝑎:
viewing paramters
= extrinsic parameters

• 𝑓𝑓𝑓𝑓𝑣𝑣𝑦𝑦,𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎𝑡𝑡,𝑛𝑛𝑒𝑒𝑎𝑎𝑟𝑟, 𝑓𝑓𝑎𝑎𝑟𝑟:
perspective parameters
= intrinsic parameters

𝑒𝑒𝑦𝑦𝑒𝑒

𝑎𝑎𝑡𝑡
𝑢𝑢𝑎𝑎

𝑛𝑛𝑒𝑒𝑎𝑎𝑟𝑟

𝑓𝑓𝑎𝑎𝑟𝑟

𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎𝑡𝑡 𝑓𝑓𝑓𝑓𝑣𝑣𝑦𝑦
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In OpenGL / WebGL

• In old OpenGL versions, matrices where handled by OpenGL:
• there is one matrix PROJECTION

→orthogonal projection matrix set by:
glOrtho(left,right,bottom,top,near,far);

→perspective matrix set by
glFrustum(left,right,bottom,top,near,far);

→ or by
gluPerspective(fovy,aspect,near,far);

• Viewing matrix and model matrix are stored as one MODELVIEW matrix
→ first, viewing is set using
gluLookAt(eyex,eyey,eyez,atx,aty,atz,upx,upy,upz);
where the view direction is set using a lookat point: 𝑔𝑔 = 𝑎𝑎𝑡𝑡 − 𝑒𝑒𝑦𝑦𝑒𝑒

→ then modeling transformations can be appended, e.g. using
glTranslate(…), glRotate(…), glMultMatrix(…)

• To every vertex, first the MODELVIEW and then the PROJECTION matrix is 
applied before rasterization
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In OpenGL / WebGL

• New OpenGL and WebGL have to do all this in the vertex shader
• So the matrix stuff must happen by the application

• In javascript: libraries, e.g. gl-Matrix.js

• and then upload the matrices as uniforms
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Next

• Visibility: now that we have depth, how can we compute occlusion ?
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