
Lecture #7

Viewing and Perspective
Computer Graphics

Winter Term 2020/21

Marc Stamminger / Roberto Grosso

Remember: Mapping 3D to 2D

• Simple projection: parallel projection onto plane
• Affine → parallel lines remain parallel

• real perspective → point projection

Computer Graphics 2020/21 - Viewing and Perspective

𝑑𝑑

orthographic
projection

“real” perspective
projectioncamera

2

• Project scene onto image plane using point projection with camera as
projection center

3

Perspective Projection

camera

Computer Graphics 2020/21 - Viewing and Perspective

• Strategy based on simple mathematical rule
• Project objects directly towards the eye

• Draw object where they meet a view plane in front of the eye

4

Perspective Projection

Computer Graphics 2020/21 - Viewing and Perspective

5

Perspective Projection

Albrecht Dürer
Der Zeichner der Laute
1512–1525

Albrecht Dürer
Der Zeichner des liegenden Weibes
1512–1525

Computer Graphics 2020/21 - Viewing and Perspective

• Linear Perspective Projection: The pinhole camera

6

Perspective Projection

“When images of illuminated objects ...
penetrate through a small hole into a very

dark room ... you will see [on the opposite
wall] these objects in their proper form and
color, reduced in size ... in a reversed position,

owing to the intersection of the rays".
Da Vinci

http://www.acmi.net.au/AIC/CAMERA_OBSCURA.html (Russell Naughton)

Computer Graphics 2020/21 - Viewing and Perspective

7

Perspective Projection

Source:
http://www.siggraph.org/education/materials/HyperGraph/viewing/view3d/perspect.htm

Pietro Perugino, fresco at the Sistine Chape (1481-82).
Source: http://en.wikipedia.org/wiki/Vanishing_point

Masaccio 1427, Trinitz with the Virgin,
St. John and Donors.
First ever painting done in perspective. Canaletto 1735-45. The Piazza of San Marco, Venice.

One point perspective

Computer Graphics 2020/21 - Viewing and Perspective

Perspective Projection

• Properties:
• Objects appear smaller as their distance to the observer increases (foreshortening)
• Vanishing points (Fluchtpunkte): Lines parallel in world converge to a single point in

image space (rails of a railroad)
• 1, 2 or 3-point perspective: Lines parallel to 1, 2 or 3 of the main axes converge in a

vanishing point, the others remain parallel

• One point perspective
• the image plane is orthogonal to one of the coordinate axis and parallel to the other

two.

• Two point perspective
• The image plane in parallel to one coordinate axis and intersect the other two.

• Three-point perspective
• The image plane intersects all three coordinate axis.

8Computer Graphics 2020/21 - Viewing and Perspective

• One-point perspective – one vanishing point

9

Perspective Projection

source: http://stevewebel.com/photographer/wp-
content/uploads/2008/04/vanishing-point.jpg

source:http://cavespirit.com/CaveWall/5/vanishin
g_point_high_horizon.jpg

Computer Graphics 2020/21 - Viewing and Perspective

• Two-point perspective – two vanishing points

10

Perspective Projection

http://www.vintage-views.com/WaresModernPerspective/images/1219k6-Plate1.jpg

Computer Graphics 2020/21 - Viewing and Perspective

• Two-point perspective – two vanishing points

11

Perspective Projection

Sanaa-essen-Zollverein-School-of-Management-and-Design-220409-01.jpg
de.wikipedia.org

Computer Graphics 2020/21 - Viewing and Perspective

Perspective Projection
• orthographic projection • perspective projection

12view box view frustumComputer Graphics 2020/21 - Viewing and Perspective

Perspective Projection

• How can we describe this projection?
• Look at special case:

• camera in origin
• looks into z-direction
• projection onto 𝑧𝑧 = 1 plane

•
𝑥𝑥′
𝑦𝑦′
𝑧𝑧′

=

𝑥𝑥
𝑧𝑧
𝑦𝑦
𝑧𝑧
1

• Projection is division by 𝑧𝑧 !

13

(𝑥𝑥,𝑦𝑦, 𝑧𝑧)

𝑧𝑧

𝑧𝑧 = 1𝑥𝑥, 𝑦𝑦

(𝑥𝑥′,𝑦𝑦′, 𝑧𝑧′)

Computer Graphics 2020/21 - Viewing and Perspective

Perspective Projection

• How can we handle this ?
• Remember homogeneous coordinates:

𝑥𝑥
𝑦𝑦 →

𝑥𝑥
𝑦𝑦
1

→
⋅𝐴𝐴 𝑥𝑥′

𝑦𝑦′
𝑤𝑤′

→

𝑥𝑥′

𝑤𝑤′

𝑦𝑦′

𝑤𝑤′

• 𝑤𝑤 is common divisor

• if we move 𝑧𝑧 to 𝑤𝑤, the final division will generate perspective:

𝑥𝑥
𝑦𝑦
𝑧𝑧

→

𝑥𝑥
𝑦𝑦
𝑧𝑧
1

⋅𝑀𝑀
𝑥𝑥
𝑦𝑦
𝑧𝑧
𝑧𝑧

→
𝑥𝑥/𝑧𝑧
𝑦𝑦/𝑧𝑧

1
with 𝑀𝑀 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0

14Computer Graphics 2020/21 - Viewing and Perspective

Viewing and Projection

• How can we generalize all this?
→ To describe both orthogonal and perspective projection,
we consider two separate steps, both described as matrices:

• First Viewing
• defines camera position and view direction
• rigid transformation
• moves camera position to origin and aligns axes:

→ 𝑥𝑥-axis points in horizontal image direction
→ 𝑦𝑦-axis points in vertical image direction
→ 𝑧𝑧-axis points in view direction

• to get a right-handed coordinate system, often – 𝑧𝑧 is view direction

• Then Projection
• then an orthogonal or perspective projection is performed
• and a rectangular regions from the image plane mapped to the final image

15Computer Graphics 2020/21 - Viewing and Perspective

• Compute axes for viewing transformation
→ 𝑢𝑢-axis points in horizontal image direction
→ 𝑣𝑣-axis points in vertical image direction
→ 𝑤𝑤-axis points in view direction

• We define these indirectly using the following three more intuitive vectors:
• Eye position 𝑒𝑒: location of the eye / center of the lens
• Gaze direction 𝑔𝑔: direction the viewer is looking
• View-up vector 𝑡𝑡: points upwards

→ vertical in image
→ typically (0,1,0) → “y is up” or (0,0,1) → “z is up”

16

Viewing Transformation

camera

camera

𝑢𝑢

𝑣𝑣

𝑤𝑤

𝑔𝑔

𝑡𝑡

Computer Graphics 2020/21 - Viewing and Perspective

Viewing Transformation

• Usually, we think in right-handed coordinate systems

• but 𝑢𝑢, 𝑣𝑣,𝑤𝑤 on the previous slide are left-handed

• if we want to maintain the meaning of 𝑢𝑢 and 𝑣𝑣 (right and up), we have to flip
the 𝑧𝑧-axes and make – 𝑧𝑧 to the view direction.

• this will lead to some random
negative signs with respect to 𝑧𝑧…

Computer Graphics 2020/21 - Viewing and Perspective 17

thumb =
x =
“right”

pointing finger =
y =
“up”

middle finger =
z

view direction=
-z

• Given: camera position 𝑒𝑒, view direction 𝑔𝑔 and up-vector 𝑡𝑡
• Compute new basis: origin 𝑒𝑒 and basis vectors (𝑢𝑢, 𝑣𝑣,𝑤𝑤)
• 𝑤𝑤

• points opposite to gaze direction (“-z” convention): 𝑤𝑤 = −𝑔𝑔/ 𝑔𝑔

• 𝑣𝑣
• almost the same as 𝑡𝑡, but not always
• if gaze direction is not perpendicular to 𝑡𝑡, then we have to rotate 𝑣𝑣 away from 𝑡𝑡
• 𝑣𝑣, 𝑡𝑡, and 𝑔𝑔 should be in one plane
• simple solution: first compute 𝑢𝑢, then 𝑣𝑣

• 𝑢𝑢
• should be perpendicular to both g and t:

𝑢𝑢 =
𝑡𝑡 × 𝑤𝑤
𝑡𝑡 × 𝑤𝑤

• then 𝑣𝑣 is perpendicular to both 𝑢𝑢 and 𝑤𝑤:
v = w × 𝑢𝑢

18

Viewing Transformation

𝑔𝑔

w = −𝑔𝑔

𝑡𝑡

.

𝑣𝑣

. .

≠ 90°

𝑢𝑢

Computer Graphics 2020/21 - Viewing and Perspective

• Given: camera position 𝑒𝑒, look-at point 𝑎𝑎 and up-vector 𝑡𝑡
• Recipe

• 𝑔𝑔 = 𝑎𝑎 − 𝑒𝑒
• 𝑤𝑤 = −𝑔𝑔/ 𝑔𝑔
• 𝑢𝑢 = 𝑡𝑡×𝑤𝑤

𝑡𝑡×𝑤𝑤

• v = w × 𝑢𝑢
• The viewing transformation is then

(see intro slides; 𝑢𝑢, 𝑣𝑣,𝑤𝑤 are orthonormal):

• 𝑅𝑅 =
𝑢𝑢𝑥𝑥 𝑣𝑣𝑥𝑥 𝑤𝑤𝑥𝑥
𝑢𝑢𝑦𝑦 𝑣𝑣𝑦𝑦 𝑤𝑤𝑦𝑦
𝑢𝑢𝑧𝑧 𝑣𝑣𝑧𝑧 𝑤𝑤𝑧𝑧

e =
𝑒𝑒𝑥𝑥
𝑒𝑒𝑦𝑦
𝑒𝑒𝑧𝑧

• 𝑀𝑀𝑣𝑣 =

⋮
𝑅𝑅𝑇𝑇 −𝑅𝑅𝑇𝑇𝑒𝑒

⋮
0 0 0 1

=

𝑢𝑢𝑥𝑥 𝑢𝑢𝑦𝑦 𝑢𝑢𝑧𝑧 −𝑢𝑢𝑇𝑇𝑒𝑒
𝑣𝑣𝑥𝑥 𝑣𝑣𝑦𝑦 𝑣𝑣𝑧𝑧 −𝑣𝑣𝑇𝑇𝑒𝑒
𝑤𝑤𝑥𝑥 𝑤𝑤𝑦𝑦 𝑤𝑤𝑧𝑧 −𝑤𝑤𝑇𝑇𝑒𝑒
0 0 0 1

19

Viewing Transformation

Computer Graphics 2020/21 - Viewing and Perspective

Viewing → Projection

• When the coordinates are aligned
with the camera, we have a
much simpler situation:

20

−𝑧𝑧

𝑥𝑥

𝑦𝑦 −𝑧𝑧

𝑥𝑥

𝑦𝑦

−𝑧𝑧

𝑥𝑥

𝑦𝑦

orthogonal
projection

perspective
projection

Computer Graphics 2020/21 - Viewing and Perspective

Orthogonal Projection

• Projection onto image plane 𝑧𝑧 = 0:

𝑀𝑀 =

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

• This way, 𝑧𝑧 (=depth) gets lost…

• so we keep 𝑧𝑧:

𝑀𝑀𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑜 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

= 𝐼𝐼

21Computer Graphics 2020/21 - Viewing and Perspective

Perspective Projection

• For a perspective projection, we use the 𝑧𝑧 = 1 image plane

𝑀𝑀 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0

• Again, 𝑧𝑧 gets lost (𝑧𝑧𝑧 = 𝑧𝑧/𝑧𝑧 = 1)
• We thus use:

𝑀𝑀𝑝𝑝𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑣𝑣𝑝𝑝 =

1 0 0 0
0 1 0 0
0 0 1 −1
0 0 1 0

• now 𝑧𝑧 → 𝑧𝑧−1
𝑧𝑧

= 1 − 1
𝑧𝑧

• new depth not linear in 𝑧𝑧, but order is maintained

22Computer Graphics 2020/21 - Viewing and Perspective

Perspective Projection

• Perspective matrix maps infinite view frustum to a box !
• after this mapping, (𝑥𝑥,𝑦𝑦) are image coordinates and 𝑧𝑧 is depth
• 𝑧𝑧 has non-linear to depth

23

−𝑧𝑧

𝑥𝑥

𝑦𝑦

−𝑧𝑧

𝑥𝑥

𝑦𝑦

𝑧𝑧 = 1 𝑧𝑧 = 1 → 𝑧𝑧 = 0 𝑧𝑧 = ∞ → 𝑧𝑧 = 1

Computer Graphics 2020/21 - Viewing and Perspective

Cropping

• After projection (both orthogonal and perspective)
• x and y are image coordinates, z is depth

• Finally, we have to define
• which window of this image plane becomes our final image
• this image is a rectangular interval 𝑥𝑥𝑚𝑚𝑝𝑝𝑚𝑚, 𝑥𝑥𝑚𝑚𝑚𝑚𝑥𝑥 × 𝑦𝑦𝑚𝑚𝑝𝑝𝑚𝑚,𝑦𝑦𝑚𝑚𝑚𝑚𝑥𝑥
• usually: 𝑥𝑥𝑚𝑚𝑝𝑝𝑚𝑚 = −𝑥𝑥𝑚𝑚𝑚𝑚𝑥𝑥, 𝑦𝑦𝑚𝑚𝑝𝑝𝑚𝑚 = −𝑦𝑦𝑚𝑚𝑚𝑚𝑥𝑥

24

−𝑧𝑧

𝑥𝑥

𝑦𝑦

𝑥𝑥
𝑚𝑚
𝑝𝑝𝑚𝑚

𝑥𝑥
𝑚𝑚
𝑚𝑚𝑥𝑥

−𝑧𝑧

𝑥𝑥

𝑦𝑦

𝑥𝑥
𝑚𝑚
𝑝𝑝𝑚𝑚 𝑥𝑥
𝑚𝑚
𝑚𝑚𝑥𝑥

Computer Graphics 2020/21 - Viewing and Perspective

Cropping

• to this end, we map 𝑥𝑥𝑚𝑚𝑝𝑝𝑚𝑚, 𝑥𝑥𝑚𝑚𝑚𝑚𝑥𝑥 × 𝑦𝑦𝑚𝑚𝑝𝑝𝑚𝑚,𝑦𝑦𝑚𝑚𝑚𝑚𝑥𝑥 to −1,1 2 :

𝑀𝑀𝑝𝑝 =

2
𝑥𝑥𝑚𝑚𝑚𝑚𝑥𝑥 − 𝑥𝑥𝑚𝑚𝑝𝑝𝑚𝑚

0 0 −
𝑥𝑥𝑚𝑚𝑚𝑚𝑥𝑥 + 𝑥𝑥𝑚𝑚𝑝𝑝𝑚𝑚
𝑥𝑥𝑚𝑚𝑚𝑚𝑥𝑥 − 𝑥𝑥𝑚𝑚𝑝𝑝𝑚𝑚

0
2

𝑥𝑥𝑚𝑚𝑚𝑚𝑥𝑥 − 𝑥𝑥𝑚𝑚𝑝𝑝𝑚𝑚
0 −

𝑦𝑦𝑚𝑚𝑚𝑚𝑥𝑥 + 𝑦𝑦𝑚𝑚𝑝𝑝𝑚𝑚
𝑥𝑥𝑚𝑚𝑚𝑚𝑥𝑥 − 𝑥𝑥𝑚𝑚𝑝𝑝𝑚𝑚

0 0 1 0
0 0 0 1

25Computer Graphics 2020/21 - Viewing and Perspective

Depth Normalization

• finally, we also want to normalize depth to be in [−1,1]
• we define a near plane and a far plane: 𝑧𝑧 = −𝑧𝑧𝑚𝑚𝑝𝑝𝑚𝑚𝑜𝑜 and 𝑧𝑧 = −𝑧𝑧𝑓𝑓𝑚𝑚𝑜𝑜

(remember: „-z“-convention)

• linear mapping on 𝑧𝑧, such that 𝑧𝑧𝑚𝑚𝑝𝑝𝑚𝑚𝑜𝑜 → −1 and 𝑧𝑧𝑓𝑓𝑚𝑚𝑜𝑜 → 1:

𝑀𝑀𝑝𝑝 =

1 0 0 0
0 1 0 0
0 0 𝐴𝐴 𝐵𝐵
0 0 0 1

• choose 𝐴𝐴 and 𝐵𝐵, such that
• 𝑧𝑧 = −𝑛𝑛 gets mapped to 𝑧𝑧 = −1 and
• 𝑧𝑧 = −𝑓𝑓 gets mapped to 𝑧𝑧 = 1

• → 𝐴𝐴 = −𝑓𝑓+𝑚𝑚
𝑓𝑓−𝑚𝑚

,𝐵𝐵 = − 2𝑓𝑓𝑚𝑚
𝑓𝑓−𝑚𝑚

26Computer Graphics 2020/21 - Viewing and Perspective

WebGL: Orthogonal Projection Matrix

• Standard projection, cropping, and depth normalizationare merged to a
single matrix, called the Projection Matrix

• Orthogonal Projection:
The image window is defined by (𝑙𝑙, 𝑟𝑟, 𝑏𝑏, 𝑡𝑡) (left,right,bottom,top) and the
depth range by 𝑛𝑛 and 𝑓𝑓

• 𝑀𝑀𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑜(𝑙𝑙, 𝑟𝑟, 𝑏𝑏, 𝑡𝑡,𝑛𝑛, 𝑓𝑓) =

2
𝑜𝑜−𝑙𝑙

0 0 − 𝑜𝑜+𝑙𝑙
𝑜𝑜−𝑙𝑙

0 2
𝑡𝑡−𝑏𝑏

0 − 𝑡𝑡+𝑏𝑏
𝑡𝑡−𝑏𝑏

0 0 2
𝑚𝑚−𝑓𝑓

− 𝑓𝑓+𝑚𝑚
𝑓𝑓−𝑚𝑚

0 0 0 1

27

x

y
z

(𝑙𝑙, 𝑏𝑏,𝑛𝑛)

(𝑟𝑟, 𝑡𝑡, 𝑓𝑓)

Computer Graphics 2020/21 - Viewing and Perspective

WebGL: Perspective Projection Matrix

• Perspective Projection:
The depth range goes from 𝑛𝑛 to 𝑓𝑓 (near to far), and the image window
(𝑙𝑙, 𝑟𝑟, 𝑏𝑏, 𝑡𝑡) is defined on the near-plane

• 𝑀𝑀𝑝𝑝𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑣𝑣𝑝𝑝(𝑙𝑙, 𝑟𝑟, 𝑏𝑏, 𝑡𝑡,𝑛𝑛, 𝑓𝑓) =

2𝑚𝑚
𝑜𝑜−𝑙𝑙 0 𝑙𝑙+𝑜𝑜

𝑜𝑜−𝑙𝑙 0
0 2𝑚𝑚

𝑡𝑡−𝑏𝑏
𝑏𝑏+𝑡𝑡
𝑡𝑡−𝑏𝑏 0

0 0 −𝑓𝑓+𝑚𝑚
𝑓𝑓−𝑚𝑚 − 2𝑓𝑓𝑚𝑚

𝑓𝑓−𝑚𝑚
0 0 −1 0

28

x

y

z (𝑙𝑙, 𝑏𝑏,𝑛𝑛)

(𝑟𝑟, 𝑡𝑡,𝑛𝑛)

Computer Graphics 2020/21 - Viewing and Perspective

WebGL: Perspective Projection Matrix

• Perspective Matrix usually defined by
• opening angle in y-direction: field of view in 𝑦𝑦 → 𝑓𝑓𝑓𝑓𝑣𝑣𝑦𝑦
• aspect ratio: ration of width over height → 𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎𝑡𝑡
• near and far plane → 𝑛𝑛, 𝑓𝑓

• −𝑙𝑙 = 𝑟𝑟 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎𝑡𝑡 ⋅ 𝑛𝑛 ⋅ tan fovy
2

• −𝑏𝑏 = 𝑡𝑡 = 𝑛𝑛 ⋅ tan 𝑓𝑓𝑜𝑜𝑣𝑣𝑦𝑦
2

• Large field of view corresponds to a wide angle lens, small field of view to a
tele lens

29

x

y

z

field of view

Computer Graphics 2020/21 - Viewing and Perspective

Projection of View Frusta

• The projection matrices transform the orthogonal and perspective view
frustum into the canonical view frustum −𝟏𝟏,𝟏𝟏 𝟑𝟑

30

x

y
z

x

y

z
(-1

,-1
,-1

) (1
,1

,1
)

x

z

y

perspective matrix

Computer Graphics 2020/21 - Viewing and Perspective

Demo Viewing and Perspective

Computer Graphics 2020/21 - Viewing and Perspective 31

32

Normalizing Transformation

• The perspective matrix transforms the view frustum to the unit cube

• We also call this the Normalizing Transformation

• It belongs to the class of Projective Transformations

Computer Graphics 2020/21 - Viewing and Perspective

• The perspective matrix transform the view frustum to the unit cube

• Regions close to observer are enlarged, distant regions are shrunk
⇒ perspective distortion

33

Normalizing Transformation

Computer Graphics 2020/21 - Viewing and Perspective

• homogenous coordinates allows us to represent points at infinity:
lim(x, y, z, w)

𝑤𝑤→0
= point at infinity in direction 𝑥𝑥,𝑦𝑦, 𝑧𝑧

→ points at infinity = directions = 𝑥𝑥,𝑦𝑦, 𝑧𝑧, 0
• A projective matrix can map such infinity points (𝑥𝑥,𝑦𝑦, 𝑧𝑧, 0) to finite points

(𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝑤𝑤), 𝑤𝑤 ≠ 0 and vice versa !
• Intersection of parallel lines = point at infinity = direction of these lines

gets mapped to finite point and vice versa

34

Normalizing Transformation

0
0
1
0

0
0
0
1

Computer Graphics 2020/21 - Viewing and Perspective

Normalizing Transformation

• Properties:
• lines remain lines
• parallel lines don’t remain parallel
• ratios are not preserved

Computer Graphics 2020/21 - Viewing and Perspective 35

• How to choose near and far planes: Nonlinear mapping of z:

𝑧𝑧 →
𝑛𝑛 + 𝑓𝑓
𝑓𝑓 − 𝑛𝑛

−
2𝑛𝑛𝑓𝑓
𝑓𝑓 − 𝑛𝑛 𝑧𝑧

• 𝑧𝑧-buffer with low resolution
• Objects at far distance collapse
• Drawing will fail sorting far objects due to insufficient resolution, z-fighting.

36

Normalizing Transformation

(1,1)

(-1,-1)

n

f

Computer Graphics 2020/21 - Viewing and Perspective

Normalizing Transformation

• Objects at far distance collapse

37

near

far

≈ near ≈ 2 near far
Computer Graphics 2020/21 - Viewing and Perspective

Normalizing Transformation

• choose reasonable near!

• resonable near

• too small near
→ z-values very close
→ depth order can get lost

Computer Graphics 2020/21 - Viewing and Perspective 38

• 𝑧𝑧 → 𝑚𝑚+𝑓𝑓
𝑓𝑓−𝑚𝑚

− 2𝑚𝑚𝑓𝑓
𝑓𝑓−𝑚𝑚 𝑧𝑧

• If 𝑧𝑧 is between planes n and f, it is mapped to [−1,1]
• If 𝑧𝑧 is between 0 and 𝑛𝑛, i.e. between camera and near plane, it is mapped to the

interval [−∞,−1]
• If 𝑧𝑧 is positive, i.e. behind the camera, then it remains positive after mapping.

39

Normalizing Transformation

non linear relation

Computer Graphics 2020/21 - Viewing and Perspective

• Transformations in a pipeline

40

Pipeline

Viewing Normali-
zation Viewport

W
orld coordinates

C
am

era /View
ing’

coordinates

norm
alized / clipping coord.

C
anonical View

 Volum
e

Screen Space
Pixel C

oordinates
we don’t care

Computer Graphics 2020/21 - Viewing and Perspective

• additionally, we add a model transformation
• this maps the local coordinates of an object to the world

41

Pipeline

Viewing Normali-
zationModel

O
bject/M

odel space

Viewport

Computer Graphics 2020/21 - Viewing and Perspective

W
orld coordinates

C
am

era coordinates

norm
alized coordinates

Viewing Transformation

• several coordinate systems

42

Modeling
Transformation

Viewing
Transformation

Normalization

Viewport
Transformation

3D object/model coords

3D world coords

3D camera coords

3D normalized coords

Pixel coords + z-value

Affine transformation

Affine transformation

Projective transformation

Affine transformation

Computer Graphics 2020/21 - Viewing and Perspective

All together

• 𝑒𝑒𝑦𝑦𝑒𝑒,𝑎𝑎𝑡𝑡,𝑢𝑢𝑎𝑎:
viewing paramters
= extrinsic parameters

• 𝑓𝑓𝑓𝑓𝑣𝑣𝑦𝑦,𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎𝑡𝑡,𝑛𝑛𝑒𝑒𝑎𝑎𝑟𝑟, 𝑓𝑓𝑎𝑎𝑟𝑟:
perspective parameters
= intrinsic parameters

𝑒𝑒𝑦𝑦𝑒𝑒

𝑎𝑎𝑡𝑡
𝑢𝑢𝑎𝑎

𝑛𝑛𝑒𝑒𝑎𝑎𝑟𝑟

𝑓𝑓𝑎𝑎𝑟𝑟

𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎𝑡𝑡 𝑓𝑓𝑓𝑓𝑣𝑣𝑦𝑦

Computer Graphics 2020/21 - Viewing and Perspective 43

In OpenGL / WebGL

• In old OpenGL versions, matrices where handled by OpenGL:
• there is one matrix PROJECTION

→orthogonal projection matrix set by:
glOrtho(left,right,bottom,top,near,far);

→perspective matrix set by
glFrustum(left,right,bottom,top,near,far);

→ or by
gluPerspective(fovy,aspect,near,far);

• Viewing matrix and model matrix are stored as one MODELVIEW matrix
→ first, viewing is set using
gluLookAt(eyex,eyey,eyez,atx,aty,atz,upx,upy,upz);
where the view direction is set using a lookat point: 𝑔𝑔 = 𝑎𝑎𝑡𝑡 − 𝑒𝑒𝑦𝑦𝑒𝑒

→ then modeling transformations can be appended, e.g. using
glTranslate(…), glRotate(…), glMultMatrix(…)

• To every vertex, first the MODELVIEW and then the PROJECTION matrix is
applied before rasterization

44Computer Graphics 2020/21 - Viewing and Perspective

In OpenGL / WebGL

• New OpenGL and WebGL have to do all this in the vertex shader
• So the matrix stuff must happen by the application

• In javascript: libraries, e.g. gl-Matrix.js

• and then upload the matrices as uniforms

45Computer Graphics 2020/21 - Viewing and Perspective

Next

• Visibility: now that we have depth, how can we compute occlusion ?

Computer Graphics 2020/21 - Viewing and Perspective 46

	Lecture #7��Viewing and Perspective
	Remember: Mapping 3D to 2D
	Perspective Projection
	Perspective Projection
	Perspective Projection
	Perspective Projection
	Perspective Projection
	Perspective Projection
	Perspective Projection
	Perspective Projection
	Perspective Projection
	Perspective Projection
	Perspective Projection
	Perspective Projection
	Viewing and Projection
	Viewing Transformation
	Viewing Transformation
	Viewing Transformation
	Viewing Transformation
	Viewing → Projection
	Orthogonal Projection
	Perspective Projection
	Perspective Projection
	Cropping
	Cropping
	Depth Normalization
	WebGL: Orthogonal Projection Matrix
	WebGL: Perspective Projection Matrix
	WebGL: Perspective Projection Matrix
	Projection of View Frusta
	Demo Viewing and Perspective
	Normalizing Transformation
	Normalizing Transformation
	Normalizing Transformation
	Normalizing Transformation
	Normalizing Transformation
	Normalizing Transformation
	Normalizing Transformation
	Normalizing Transformation
	Pipeline
	Pipeline
	Viewing Transformation
	All together
	In OpenGL / WebGL
	In OpenGL / WebGL
	Next

