
Lecture #06

Going 3D
Computer Graphics

Winter Term 2020/21

Marc Stamminger / Roberto Grosso

Content

• In this lecture:
• parallel projection
• more about homogeneous coordinates
• points, vectors, and normals
• projective transformations

2Computer Graphics 2020/21 - Going 3D

Parallel Projection

• Our world is 3D, images are 2D
• We have to project the world to a 2D image

• First attempt:
project along a given direction 𝑑𝑑 = (𝑑𝑑1,𝑑𝑑2,𝑑𝑑3) to a screen plane, e.g. 𝑧𝑧 = 0:

𝑥𝑥
𝑦𝑦
𝑧𝑧

+ 𝛼𝛼𝑑𝑑 =
𝑥𝑥′
𝑦𝑦′
0

→ 𝛼𝛼 = −
𝑧𝑧
𝑑𝑑𝑧𝑧

• →
𝑥𝑥′
𝑦𝑦′
𝑧𝑧′

=
1 0 −𝑑𝑑𝑥𝑥

𝑑𝑑𝑧𝑧

0 1 −𝑑𝑑𝑦𝑦
𝑑𝑑𝑧𝑧

0 0 0

𝑥𝑥
𝑦𝑦
𝑧𝑧

3

𝑑𝑑

Computer Graphics 2020/21 - Going 3D

Parallel Projection Demo

Computer Graphics 2020/21 - Going 3D 4

WebGL Parallel Projection

Computer Graphics 2020/21 - Going 3D 5

Mapping 3D to 2D

• We can throw away 𝑧𝑧 to get a 3D→2D mapping:

𝑥𝑥′
𝑦𝑦′ =

1 0 −
𝑑𝑑𝑥𝑥
𝑑𝑑𝑧𝑧

0 1 −
𝑑𝑑𝑦𝑦
𝑑𝑑𝑧𝑧

𝑥𝑥
𝑦𝑦
𝑧𝑧

• but it makes sense to keep z, we need it later (e.g. for occlusion):

𝑥𝑥′
𝑦𝑦′

𝑧𝑧′ = 𝑧𝑧
=

1 0 −
𝑑𝑑𝑥𝑥
𝑑𝑑𝑧𝑧

0 1 −
𝑑𝑑𝑦𝑦
𝑑𝑑𝑧𝑧

0 0 1

𝑥𝑥
𝑦𝑦
𝑧𝑧

Computer Graphics 2020/21 - Going 3D 6

Parallel Projection

• Further question: which part of the image plane becomes our image ?
→ define rectangle on image plane

Computer Graphics 2020/21 - Going 3D 7

𝑑𝑑

𝑑𝑑

𝑑𝑑

Parallel Projection

• for example, we can use an axis-aligned rectangle 𝑥𝑥0, 𝑥𝑥1 × [𝑦𝑦0,𝑦𝑦1]

• With homogeneous coordinates:

𝑥𝑥′
𝑦𝑦′

𝑧𝑧′ = 𝑧𝑧
1

=

2
𝑥𝑥1 − 𝑥𝑥0

0 0
𝑥𝑥0 + 𝑥𝑥1
𝑥𝑥0 − 𝑥𝑥1

0
2

𝑦𝑦1 − 𝑦𝑦0
0

𝑦𝑦0 + 𝑦𝑦1
𝑦𝑦0 − 𝑦𝑦1

0 0 1 0
0 0 0 1

1 0 −
𝑑𝑑𝑥𝑥
𝑑𝑑𝑧𝑧

0

0 1 −
𝑑𝑑𝑦𝑦
𝑑𝑑𝑧𝑧

0

0 0 1 0
0 0 0 1

𝑥𝑥
𝑦𝑦
𝑧𝑧
1

Computer Graphics 2020/21 - Going 3D 8

𝑑𝑑

𝑥𝑥0 𝑥𝑥1

𝑦𝑦0

𝑦𝑦1

-1 1
-1

1

Mapping 3D to 2D

• Simple projection: parallel projection onto plane
• Affine → parallel lines remain parallel

• real perspective → point projection (later)

Computer Graphics 2020/21 - Going 3D

𝑑𝑑

orthographic
projection

“real” perspective
projectioncamera

9

Orthographic Projection

• Alternative interpretation:
• define a box in 3D

• 𝑒𝑒3 is the projection direction
• 𝑒𝑒1 and 𝑒𝑒2 span the image plane and define the image window

• The scene inside the box is projected to the box’s backside
• This can generate all parallel projections !

→ Non-perpendicular projection only results in non-uniform scaling

10

𝑒𝑒1
𝑒𝑒3

𝑒𝑒2

Computer Graphics 2020/21 - Going 3D

Orthographic Projection

• Simple way to compute this:
• transform box to unit cube −1,1 3

• → (𝑥𝑥,𝑦𝑦) are image coordinates ∈ −1,1 2

→ 𝑧𝑧 is „normalized depth“ ∈ [−1,1]
• usually box is chosen deep enough to contain entire scene

→ all depth values in the range [−1,1]

11

𝑒𝑒1
𝑒𝑒3

𝑒𝑒2

(−1,−1,−1)

(1,1,1)

x

z

y

Computer Graphics 2020/21 - Going 3D

3D Affine Transformations

• Affine Transformations in 3D as in 2D:
• Coordinate system changes:

𝑥𝑥′
𝑦𝑦′
𝑧𝑧′
𝑤𝑤′

=

⋮ ⋮ ⋮ 𝑂𝑂1
𝑒𝑒1 𝑒𝑒2 𝑒𝑒3 𝑂𝑂2
⋮ ⋮ ⋮ 𝑂𝑂3
0 0 0 1

𝑥𝑥
𝑦𝑦
𝑧𝑧
𝑤𝑤

• Maps the unit cube to a parallelepiped

12

𝑥𝑥

𝑧𝑧

𝑦𝑦

𝑥𝑥′

𝑧𝑧′

𝑦𝑦′

𝑒𝑒1

𝑒𝑒2

𝑒𝑒3
𝑂𝑂

Computer Graphics 2020/21 - Going 3D

3D Affine Transformations

• Other direction: maps any parallelepiped to the unit cube

• use the inverse matrix:

𝑥𝑥′
𝑦𝑦′
𝑧𝑧′
𝑤𝑤′

=

⋮ ⋮ ⋮ 𝑂𝑂1
𝑒𝑒1 𝑒𝑒2 𝑒𝑒3 𝑂𝑂2
⋮ ⋮ ⋮ 𝑂𝑂3
0 0 0 1

−1 𝑥𝑥
𝑦𝑦
𝑧𝑧
𝑤𝑤

13

𝑥𝑥′

𝑧𝑧′

𝑦𝑦′

𝑥𝑥

𝑧𝑧

𝑦𝑦
𝑒𝑒1

𝑒𝑒2

𝑒𝑒3
𝑂𝑂

Computer Graphics 2020/21 - Going 3D

3D Affine Transformations

• Scalings, Translation, Shearings, Reflections are in 3D as in 2D
• only three values / skew directions / reflection planes instead of 2

• Translation: 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒 𝑑𝑑𝑥𝑥,𝑑𝑑𝑦𝑦,𝑑𝑑𝑧𝑧 =

1 0 0 𝑑𝑑𝑥𝑥
0 1 0 𝑑𝑑𝑦𝑦
0 0 1 𝑑𝑑𝑧𝑧
0 0 0 1

• Scaling: 𝑡𝑡𝑠𝑠𝑡𝑡𝑡𝑡𝑒𝑒 𝑡𝑡𝑥𝑥, 𝑡𝑡𝑦𝑦 , 𝑡𝑡𝑧𝑧 =

𝑡𝑡𝑥𝑥 0 0 0
0 𝑡𝑡𝑦𝑦 0 0
0 0 𝑡𝑡𝑧𝑧 0
0 0 0 1

• Z-Shear: 𝑡𝑡𝑠𝑒𝑒𝑡𝑡𝑡𝑡𝑧𝑧 𝑑𝑑𝑥𝑥,𝑑𝑑𝑦𝑦 =

1 0 𝑑𝑑𝑥𝑥 0
0 1 𝑑𝑑𝑦𝑦 0
0 0 1 0
0 0 0 1

Computer Graphics 2020/21 - Going 3D 14

• Rotation around the x-, y- and z-axis

• 𝑅𝑅𝑅𝑅𝑡𝑡𝑥𝑥 𝜙𝜙 =

1 0 0 0
0 cos𝜙𝜙 − sin𝜙𝜙 0
0 sin𝜙𝜙 cos𝜙𝜙 0
0 0 0 1

• 𝑅𝑅𝑅𝑅𝑡𝑡𝑦𝑦 𝜙𝜙 =

cos𝜙𝜙 0 sin𝜙𝜙 0 0
0 1 0 0

− sin𝜙𝜙 0 cos𝜙𝜙 0
0 0 0 1

• 𝑅𝑅𝑅𝑅𝑡𝑡𝑧𝑧 𝜙𝜙 =

cos𝜙𝜙 − sin𝜙𝜙 0 0
sin𝜙𝜙 cos𝜙𝜙 0 0

0 0 1 0
0 0 0 1

• But how do we describe arbitrary rotations ?

15

3D Affine Transformations

Computer Graphics 2020/21 - Going 3D

• For now, we only rotate around the origin
→ a 3x3 matrix is sufficient

• The columns of a rotation matrix are the unit vectors after rotation:

𝑅𝑅
𝑥𝑥
𝑦𝑦
𝑧𝑧

=
𝑢𝑢𝑥𝑥 𝑣𝑣𝑥𝑥 𝑤𝑤𝑥𝑥
𝑢𝑢𝑦𝑦 𝑣𝑣𝑦𝑦 𝑤𝑤𝑦𝑦
𝑢𝑢𝑧𝑧 𝑣𝑣𝑧𝑧 𝑤𝑤𝑧𝑧

𝑥𝑥
𝑦𝑦
𝑧𝑧

• Here 𝑢𝑢, 𝑣𝑣,𝑤𝑤 are the main axes after the rotation

• For rotation matrices, the inverse is simply the transpose:

𝑅𝑅−1 = 𝑅𝑅𝑇𝑇

16

Rotations in 3D

Computer Graphics 2020/21 - Going 3D

3D Affine Transformations

• Special case: orthonormal 𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3:
𝑒𝑒1 ∘ 𝑒𝑒2 = 𝑒𝑒1 ∘ 𝑒𝑒3 = 𝑒𝑒2 ∘ 𝑒𝑒3 = 0, 𝑒𝑒1 ∘ 𝑒𝑒1 = 𝑒𝑒2 ∘ 𝑒𝑒2 = 𝑒𝑒3 ∘ 𝑒𝑒3 = 1

• = Rigid Transformation: rotation + translation

• The inverse of rotation = transposed (for linear part)

⋮ ⋮ ⋮ 𝑂𝑂1
𝑒𝑒1 𝑒𝑒2 𝑒𝑒3 𝑂𝑂2
⋮ ⋮ ⋮ 𝑂𝑂3
0 0 0 1

−1

=

⋮
𝑅𝑅 𝑡𝑡

⋮
0 0 0 1

−1

=

⋮
𝑅𝑅𝑇𝑇 −𝑅𝑅𝑇𝑇𝑡𝑡

⋮
0 0 0 1

17Computer Graphics 2020/21 - Going 3D

3D Affine Transformations

• Caveat:
• a matrix with orthonormal rows (or columns) is called “orthogonal”
• a matrix with orthogonal rows (or columns) is called “matrix”

Computer Graphics 2020/21 - Going 3D 18

• The description of 3D rotations is a core problem in computer graphics
• Positioning objects in the world
• Animating objects (= interpolating rotations)
• Modeling camera animations
• …

• Two important questions:
• how to describe a rotation ?
• how to interpolate rotations ?

→ Some representations result in awkward interpolation

19

Rotations in 3D

Computer Graphics 2020/21 - Going 3D

Rotations in 3D

• How to specify rotations in 3D
• Orthogonal matrices
• 3 Euler rotations, e.g.

• Rotz → Rotx → Rotz
• Rotz → Roty → Rotz
• Rotx → Roty → Rotz

• Axis of rotation and angle
• Quaternions

• Etc, e.g. 2 (planar) reflections

20Computer Graphics 2020/21 - Going 3D

Rotations in 3D

• Orthonormal matrices
• 9 degrees of freedom for matrix, 6 of which are fixed by constraints
• Not very intuitive (user interface?)
• Interpolation

• Linear interpolation
→ interpolation of unit vectors

• Requires renormalization
• Non-uniform animation

→ see later: slerp-interpolation
• Impossible for 180°rotations

Computer Graphics 2020/21 - Going 3D 21

𝑒𝑒1𝑅𝑅 ⋅ 𝑒𝑒1

𝛼𝛼𝑅𝑅 ⋅ 𝑒𝑒1 + 1 − 𝛼𝛼 ⋅ 𝑒𝑒1

linear interpolation on this line

non-uniform in angular space

• Euler angles
• Any rotation can be given by three rotations about the main axes, e.g. 𝑋𝑋, 𝑌𝑌,

and 𝑍𝑍 (Leonhard Euler 1707 – 1783)
• If the rotations angles about 𝑍𝑍, 𝑌𝑌, and 𝑍𝑍 are 𝜓𝜓, 𝜃𝜃, and 𝜙𝜙 respectively, then

the rotation matrix is:

𝑅𝑅 = 𝑅𝑅𝑧𝑧 𝜙𝜙 𝑅𝑅𝑦𝑦 𝜃𝜃 𝑅𝑅𝑧𝑧 𝜓𝜓

=
cos𝜃𝜃 cos𝜙𝜙 sin𝜓𝜓 sin𝜃𝜃 cos𝜙𝜙 − cos𝜓𝜓 sin𝜙𝜙 cos𝜓𝜓 sin𝜃𝜃 cos𝜙𝜙 + sin𝜓𝜓 sin𝜙𝜙
cos𝜃𝜃 sin𝜙𝜙 sin𝜓𝜓 sin𝜃𝜃 sin𝜙𝜙 + cos𝜓𝜓 cos𝜙𝜙 cos𝜓𝜓 sin𝜃𝜃 sin𝜙𝜙 − sin𝜓𝜓 cos𝜙𝜙
− sin𝜃𝜃 sin𝜓𝜓 cos𝜃𝜃 cos𝜓𝜓 cos𝜃𝜃

• The angles 𝜓𝜓, 𝜃𝜃, and 𝜙𝜙 are called Euler angles.

22

Euler Rotations

Computer Graphics 2020/21 - Going 3D

• Euler angles for the Euler
rotation 𝑧𝑧 − 𝑥𝑥 − 𝑧𝑧 with
angles α− β− γ

• For given angles, the
matrix can be computed
as 𝑅𝑅𝑧𝑧 𝛾𝛾 𝑅𝑅𝑥𝑥 𝛽𝛽 𝑅𝑅𝑧𝑧 𝛼𝛼

23

Euler Rotations

Computer Graphics 2020/21 - Going 3D

Euler Rotations

24

• If the rotation matrix is
given as:

𝑅𝑅 =
𝑅𝑅11 𝑅𝑅12 𝑅𝑅13
𝑅𝑅21 𝑅𝑅22 𝑅𝑅23
𝑅𝑅31 𝑅𝑅32 𝑅𝑅33

the angles can be determined
accordingly:

• − sin𝛽𝛽 = 𝑅𝑅31
• tan𝛼𝛼 = 𝑅𝑅32/𝑅𝑅33
• tan 𝛾𝛾 = 𝑅𝑅21/𝑅𝑅11

• for 𝑅𝑅 = 𝑅𝑅𝑧𝑧 𝛾𝛾 𝑅𝑅𝑥𝑥 𝛽𝛽 𝑅𝑅𝑧𝑧 𝛼𝛼

Computer Graphics 2020/21 - Going 3D

Euler Rotations

• compact
• sort of intuitive (more than matrices)

• not suited for interpolation: Gimbal Lock problem

• Watch this great explanatory video:
https://www.youtube.com/watch?v=zc8b2Jo7mno

25Computer Graphics 2020/21 - Going 3D

https://www.youtube.com/watch?v=zc8b2Jo7mno

Euler Angles and Gimbal Lock Demo

Computer Graphics 2020/21 - Going 3D 26

Axis and Angle

• Specify rotation by an axis 𝑡𝑡, 𝑡𝑡 = 1, and a rotation angle 𝜔𝜔

• Derivation of corresponding matrix
→ transform some point 𝑝𝑝

• decompose 𝑝𝑝 into parallel (to 𝑡𝑡) and orthogonal components:
𝑝𝑝 = 𝑝𝑝∥ + 𝑝𝑝⊥, where 𝑝𝑝∥ = 𝑡𝑡 ∘ 𝑝𝑝 𝑡𝑡 and 𝑝𝑝⊥ = 𝑝𝑝 − 𝑝𝑝∥

• Create local coordinate system 𝑝𝑝⊥,𝑡𝑡 × 𝑝𝑝,𝑡𝑡 , where 𝑡𝑡 × 𝑝𝑝 = 𝑡𝑡 × 𝑝𝑝⊥
• Rotate 𝑝𝑝⊥ about 𝑡𝑡

𝑡𝑡𝑅𝑅𝑡𝑡 𝑝𝑝⊥ = 𝑝𝑝⊥ cos𝜔𝜔 + 𝑡𝑡 × 𝑝𝑝 sin𝜔𝜔
• add the parallel component

𝑡𝑡𝑅𝑅𝑡𝑡 𝑝𝑝 = 𝑝𝑝⊥ cos𝜔𝜔 + 𝑡𝑡 × 𝑝𝑝 sin𝜔𝜔 + 𝑝𝑝∥

27

𝑡𝑡

𝑝𝑝
𝑝𝑝∥

𝑝𝑝⊥

Computer Graphics 2020/21 - Going 3D

Axis and Angle

• Can we express this in a matrix?
• Rodrigues formula

• 𝑝𝑝∥ = 𝑝𝑝 ∘ 𝑡𝑡 𝑡𝑡 = ⋯ =
𝑡𝑡𝑥𝑥2 𝑡𝑡𝑥𝑥𝑡𝑡𝑦𝑦 𝑡𝑡𝑥𝑥𝑡𝑡𝑧𝑧
𝑡𝑡𝑦𝑦𝑡𝑡𝑥𝑥 𝑡𝑡𝑦𝑦2 𝑡𝑡𝑦𝑦𝑡𝑡𝑧𝑧
𝑡𝑡𝑧𝑧𝑡𝑡𝑥𝑥 𝑡𝑡𝑧𝑧𝑡𝑡𝑦𝑦 𝑡𝑡𝑧𝑧2

𝑝𝑝 = 𝑡𝑡 ⋅ 𝑡𝑡𝑇𝑇 𝑝𝑝 = 𝑃𝑃𝑝𝑝

• 𝑡𝑡 ⋅ 𝑡𝑡𝑇𝑇 is called “outer product”

• 𝑡𝑡 × 𝑝𝑝 can also be written as matrix:

𝑡𝑡 × 𝑝𝑝 =
0 −𝑡𝑡𝑧𝑧 𝑡𝑡𝑦𝑦
𝑡𝑡𝑧𝑧 0 −𝑡𝑡𝑥𝑥
−𝑡𝑡𝑦𝑦 𝑡𝑡𝑥𝑥 0

𝑝𝑝 = 𝑄𝑄𝑝𝑝

• Q is called “skew symmetric” form of n

28Computer Graphics 2020/21 - Going 3D

Axis and Angle

• 𝑡𝑡𝑅𝑅𝑡𝑡 𝑝𝑝 = 𝑝𝑝⊥ cos𝜔𝜔 + 𝑡𝑡 × 𝑝𝑝 sin𝜔𝜔 + 𝑝𝑝∥
= 𝑝𝑝 − 𝑝𝑝∥ 𝑠𝑠𝑅𝑅𝑡𝑡𝜔𝜔 + Q p sin𝜔𝜔 + 𝑝𝑝∥
= 𝐼𝐼 − 𝑃𝑃 cos𝜔𝜔 ⋅ 𝑝𝑝 + 𝑄𝑄 sin𝜔𝜔 ⋅ 𝑝𝑝 + 𝑃𝑃 ⋅ 𝑝𝑝

• Then
𝑅𝑅 𝜔𝜔,𝑡𝑡 = 𝑃𝑃 + cos𝜔𝜔(1 − 𝑃𝑃) + sin𝜔𝜔𝑄𝑄

• Often used definition: scale rotation axis by rotation angle
• Define rotation with an arbitrary vector 𝑤𝑤
• Length of 𝑤𝑤 is rotation angle, normalized 𝑤𝑤 is axis

29Computer Graphics 2020/21 - Going 3D

Rotations in 3D: Quaternions

• Remember: complex numbers add further, imaginary component to real
number:

x, y = 𝑥𝑥 + 𝑖𝑖𝑦𝑦
• Addition, multiplication etc. can be defined on these such that they form a

field (Körper), and we can use them almost like real numbers
• Multiplication with a unit length complex number (cos𝜔𝜔, sin𝜔𝜔) is

equivalent to a rotation by 𝜔𝜔

30Computer Graphics 2020/21 - Going 3D

• Quaternions carry this idea further and add three imaginary components:
x, y = 𝑥𝑥 + 𝑖𝑖1𝑦𝑦1 + 𝑖𝑖2𝑦𝑦2 + 𝑖𝑖3𝑦𝑦3

• Note: 𝑦𝑦 is a 3D-vector

• Computing with quaternions:
𝑞𝑞 + 𝑞𝑞′ = 𝑡𝑡,𝑏𝑏 + 𝑠𝑠,𝑑𝑑 = 𝑡𝑡 + 𝑠𝑠,𝑏𝑏 + 𝑑𝑑
𝑘𝑘 ⋅ 𝑞𝑞 = 𝑘𝑘 ⋅ 𝑡𝑡, 𝑏𝑏 = 𝑘𝑘𝑡𝑡, 𝑘𝑘𝑏𝑏
𝑞𝑞 ⋅ 𝑞𝑞′ = 𝑡𝑡, 𝑏𝑏 ⋅ 𝑠𝑠,𝑑𝑑 = 𝑡𝑡𝑠𝑠 − 𝑏𝑏 ∘ 𝑑𝑑,𝑡𝑡𝑑𝑑 + 𝑏𝑏𝑠𝑠 + 𝑏𝑏 × 𝑑𝑑
𝑞𝑞 ∘ 𝑞𝑞′ = 𝑡𝑡,𝑏𝑏 ∘ 𝑠𝑠,𝑑𝑑 = 𝑡𝑡𝑠𝑠 + 𝑏𝑏 ∘ 𝑑𝑑

• Further operations:
• Conjugate of a quaternion 𝑞𝑞: 𝑞𝑞∗ = 𝑡𝑡, 𝑏𝑏 ∗ = (𝑡𝑡,−𝑏𝑏)
• Norm of a quaternion 𝑞𝑞: 𝑞𝑞 2 = 𝑞𝑞𝑞𝑞∗ = 𝑞𝑞 ∘ 𝑞𝑞

• Inverse of a quaternion 𝑞𝑞: 𝑞𝑞−1 = q∗

𝑞𝑞 2
2

31

Rotations in 3D: Quaternions

Computer Graphics 2020/21 - Going 3D

• Quaternions can be used to describe rotations in 3D, like complex numbers
describe rotations in 2D

• Consider a unit length quaternion 𝑞𝑞
• A rotation can be applied to a vector 𝑣𝑣 ∈ ℝ^3

• Transform 𝑣𝑣 to a quaternion 𝑣𝑣 → 0, 𝑣𝑣
• Rotate using 𝑞𝑞 ⋅ 0, 𝑣𝑣 ⋅ 𝑞𝑞−1

• Result will have real part 0, imaginary part is rotated vector!

𝑣𝑣 → 0, 𝑣𝑣 → 𝑞𝑞 ⋅ 𝑣𝑣 ⋅ 𝑞𝑞−1 → 0, 𝑡𝑡𝑅𝑅𝑡𝑡 𝑣𝑣 → 𝑡𝑡𝑅𝑅𝑡𝑡(𝑣𝑣)
• Every rotation can be described by a quaternion and vice versa !

• Concatenation of two rotations 𝑞𝑞 and 𝑡𝑡:
𝑣𝑣 → 𝑞𝑞 ⋅ 𝑣𝑣 ⋅ 𝑞𝑞−1 → 𝑡𝑡 ⋅ 𝑞𝑞 ⋅ 𝑣𝑣 ⋅ 𝑞𝑞−1 ⋅ 𝑡𝑡−1 = 𝑡𝑡𝑞𝑞 ⋅ 𝑣𝑣 ⋅ 𝑡𝑡𝑞𝑞 −1

is simple product

32

Rotations in 3D: Quaternions

Computer Graphics 2020/21 - Going 3D

• Rotation about axis 𝑡𝑡 by angle 𝜔𝜔 is expressed by the quaternion
𝑞𝑞 = (cos𝜔𝜔

2
, n ⋅ sin𝜔𝜔

2
)

• Scaling doesn’t change the rotation
→ we usually look at unit quaternions only

• 𝑞𝑞 and −𝑞𝑞 describe the same rotation, otherwise the mapping is unique
• Every rotation is represented by exactly two unit quaternions
• Every unit quaternion describes a rotation

33

Rotations in 3D: Quaternions

Computer Graphics 2020/21 - Going 3D

• Application: Interpolation of rotations
• Assume you have an object under rotation 𝑅𝑅1 and want to animate it to a new

rotation 𝑅𝑅2
• Interpolating matrices fails
• Interpolating Euler angles will result in very weird movements
• Interpolating quaternions works better…
• … when using spherical interpolation

34

Rotations in 3D: Quaternions

Computer Graphics 2020/21 - Going 3D

Rotations in 3D: Quaternions

• Linear interpolation of unit vectors
requires renormalization

• Velocity is not uniform

• Instead, we should directly
interpolate on the sphere
→ spherical interpolation:

𝑞𝑞 𝑡𝑡 =
sin 1 − 𝑡𝑡 Ω

sinΩ
q1 +

sin tΩ
sinΩ

𝑞𝑞2

cos Ω = 𝑞𝑞1 ∘ 𝑞𝑞2

often called “slerp”

35

𝑞𝑞1 𝑞𝑞2

1 − 𝑡𝑡 𝑞𝑞1 + 𝑡𝑡𝑞𝑞2

𝑞𝑞1 𝑞𝑞2

𝑞𝑞(𝑡𝑡)

Computer Graphics 2020/21 - Going 3D

Affine Transformations

• Affine = combination of linear transformation and translation
𝑥𝑥 → 𝐴𝐴𝑥𝑥 + 𝑏𝑏

• Abstract characterization
• Maps lines to lines
• Parallel lines will be mapped to parallel lines
• Division ratios are preserved
• Angles are not preserved
• Examples: rotations, translation, scaling, shears

36Computer Graphics 2020/21 - Going 3D

Affine Transformations

37

not
affine

⇐ ⇑affine

⇒

⇓
affine

not
affine

parallel lines remain parallel

relative position of points
on lines remain:

ratios are maintained

Computer Graphics 2020/21 - Going 3D

Perspective ?

• Look at the image of a cube

parallel projection: real perspective projection:
affine mapping projective mapping

• → we need projective mappings to describe perspective

• → we need to reconsider homogeneous coordinates

38

shearing not affine

Computer Graphics 2020/21 - Going 3D

Homogeneous Coordinates

i. simplify geometric computations
ii. unify points and vectors
iii. allow us to describe projective transformations

Computer Graphics 2020/21 - Going 3D 39

Homogeneous Coordinates – Fun Facts

• Implicit equation of a line:
𝑡𝑡 ⋅ 𝑥𝑥 + 𝑡𝑡 ⋅ 𝑦𝑦 + 𝑢𝑢 = 0

→ (𝑡𝑡, 𝑡𝑡) is normal to line, i.e. line direction is (−𝑡𝑡, 𝑡𝑡) or 𝑡𝑡,−𝑡𝑡
• We can thus represented this line by

𝑡𝑡 = 𝑡𝑡, 𝑡𝑡,𝑢𝑢
→ a point 𝑝𝑝 = 𝑥𝑥,𝑦𝑦, 1 is on the line 𝑡𝑡 if

𝑝𝑝 ∘ 𝑡𝑡 = 0
• The line through two points 𝑝𝑝 and 𝑞𝑞 can be computed as

𝑡𝑡 = 𝑝𝑝 × 𝑞𝑞
• The intersection point between two lines 𝑡𝑡 and 𝑚𝑚 is

𝑝𝑝 = 𝑡𝑡 × 𝑚𝑚

Computer Graphics 2020/21 - Going 3D 40

Points and Vectors

• Difference of Points and Vectors (= Directions)

41

Vectors
• Difference between two points
• Elements of a vector space V
• Algebraic structure

• Addition of vectors
• Multiplication with scalars
• Linear combination of vectors
• etc.

Points
• Position in space
• Elements of Euclidean space E
• No algebraic structure

• No addition
• no multiplication with scalars, etc.

Computer Graphics 2020/21 - Going 3D

point
point

Points and Vectors

• Affine space: points and vectors
• Given two points 𝑡𝑡, 𝑏𝑏 ∈ 𝐸𝐸 there exists a unique vector in 𝑉𝑉: 𝒂𝒂𝒂𝒂 = b − a
• Algebraic structure:

• ab = b – a difference of two points is vector
• b = a + ab point + vector = point
• ab + bc = ac vector + vector = vector

• Often, Euclidean space and vector space are mixed
• Point is then considered as a vector from origin to point

42Computer Graphics 2020/21 - Going 3D

Points and Vectors

• Some special linear combinations of points 𝑝𝑝𝑖𝑖 are valid operations:

• Barycenter, affine combination → barycentric coordinates
• 𝑝𝑝 = ∑𝑖𝑖 𝜆𝜆𝑖𝑖𝑝𝑝𝑖𝑖 is a point if ∑𝑖𝑖 𝜆𝜆𝑖𝑖 = 1
• Example.: 0.5 𝑡𝑡 + 0.5 𝑏𝑏 = 𝑠𝑠 = midpoint of 𝑡𝑡 and 𝑏𝑏

• Generalized Difference:
• 𝑣𝑣 = ∑𝑖𝑖 𝜆𝜆𝑖𝑖𝑝𝑝𝑖𝑖 is a vector if ∑𝑖𝑖 𝜆𝜆𝑖𝑖 = 0
• Example.: −𝑡𝑡 + 𝑏𝑏 = 𝑏𝑏 − 𝑡𝑡 = vector from 𝑡𝑡 to 𝑏𝑏

43Computer Graphics 2020/21 - Going 3D

Points and Vectors

• With homogeneous coordinates:

• Points 𝑝𝑝 = 𝑥𝑥,𝑦𝑦, 1
• Vectors 𝑣𝑣 = 𝑥𝑥,𝑦𝑦, 0

44Computer Graphics 2020/21 - Going 3D

Affine Transformations + Hom. Coord.

• Remember: affine transformation of points
𝑥𝑥 → 𝐴𝐴𝑥𝑥 + 𝑡𝑡

• but vectors?
• 𝑣𝑣 = 𝑏𝑏 − 𝑡𝑡
• 𝑣𝑣 → 𝐴𝐴𝑏𝑏 + 𝑡𝑡 − 𝐴𝐴𝑡𝑡 + 𝑡𝑡 = 𝐴𝐴 𝑏𝑏 − 𝑡𝑡 = 𝐴𝐴𝑣𝑣
• becomes linear transformation with 𝐴𝐴, without translation 𝑡𝑡

• Directly works with vectors in the form 𝑥𝑥,𝑦𝑦, 0 !

45

𝑏𝑏

𝑡𝑡

𝑂𝑂
𝑡𝑡

𝑏𝑏

Computer Graphics 2020/21 - Going 3D

Affine Normal Transformations

• More tricky: transforming normal vectors
• Normals are perpendicular to tangent plane of a surface
• Transformation with matrix 𝐴𝐴 will differ from transformation of underlying surface

• We will need this later for lighting !

46

𝑡𝑡 𝐴𝐴𝑡𝑡: wrong

𝐴𝐴𝑡𝑡: okay

?𝑡𝑡

𝑡𝑡

Computer Graphics 2020/21 - Going 3D

Affine Normal Transformations

• Matrix 𝑁𝑁 for transformation of normal 𝑡𝑡
• Perpendicular to tangent vector 𝑡𝑡𝑇𝑇 ⋅ 𝑡𝑡 = 0
• Transformed normal 𝑡𝑡′ should also be perpendicular to transformed tangent 𝑡𝑡′ = 𝐴𝐴𝑡𝑡
• 𝑡𝑡𝑇𝑇 ⋅ 𝑡𝑡 = 𝑡𝑡𝑇𝑇 ⋅ 𝐼𝐼 ⋅ 𝑡𝑡

= 𝑡𝑡𝑇𝑇 ⋅ 𝐴𝐴−1𝐴𝐴 ⋅ 𝑡𝑡
= 𝑡𝑡𝑇𝑇𝐴𝐴−1 ⋅ t′ =! 0

• → 𝑡𝑡′ = 𝑡𝑡𝑇𝑇𝐴𝐴−1 𝑇𝑇 = 𝐴𝐴−1 𝑇𝑇𝑡𝑡 = 𝐴𝐴−𝑇𝑇𝑡𝑡

• Result: transform normal vectors by matrix 𝑨𝑨−𝑻𝑻

• Remark: if M is orthogonal (rigid transformation) then 𝐴𝐴−𝑇𝑇 = 𝐴𝐴
• Remark: length of normal vector can change!

47Computer Graphics 2020/21 - Going 3D

Homogeneous Coordinates

• More general: lift 2D point to homogeneous coordinates:

𝑥𝑥
𝑦𝑦 →

𝑥𝑥𝑤𝑤
𝑦𝑦𝑤𝑤
𝑤𝑤

• “Dehomogenize” → map back to 2D:

𝑥𝑥
𝑦𝑦
𝑤𝑤

→ 𝑥𝑥/𝑤𝑤
𝑦𝑦/𝑤𝑤

• 𝑤𝑤 is a “common denominator”

• 𝑤𝑤 = 0 → point at infinity → direction → vector

Computer Graphics 2020/21 - Going 3D 48

Homogeneous Coordinates

• Transformations on homogeneous coordinates:

𝑥𝑥
𝑦𝑦 →

𝑥𝑥
𝑦𝑦
1

→
⋅𝐴𝐴 𝑥𝑥′

𝑦𝑦′
𝑤𝑤′

→

𝑥𝑥′

𝑤𝑤′

𝑦𝑦′

𝑤𝑤′

• For a 3x3 matrix 𝐴𝐴 = 𝑡𝑡𝑖𝑖𝑖𝑖 :

𝑥𝑥
𝑦𝑦 →

1
𝑡𝑡31𝑥𝑥 + 𝑡𝑡32𝑦𝑦 + 𝑡𝑡33

𝑡𝑡11𝑥𝑥 + 𝑡𝑡12y + 𝑡𝑡13
𝑡𝑡21𝑥𝑥 + 𝑡𝑡22𝑦𝑦 + 𝑡𝑡23

49Computer Graphics 2020/21 - Going 3D

Homogeneous Coordinates

• When we use the last line of a matrix and homogeneous coordinates, we
enter a new class of transformations:

projective transformations

50

a b 1

linear
part

translation

Computer Graphics 2020/21 - Going 3D

Projective Transformations

• Example 𝑀𝑀 =
2 0 0
0 1 0
0 1 2

• 1,1 → 2
3

, 1
3

• −1,1 → −2
3

, 1
3

• −1,−1 → −2,−1
• 1,−1 → (2,−1)

Computer Graphics 2020/21 - Going 3D 51

looks like a perspective image
of a square, right?

Projection and Perspective

Computer Graphics 2020/21 - Going 3D 52

• For each convex quadrilateral there is a
unique projective transformation that
maps the unit square to the quadrilateral

• Perspective is a projective mapping!

ik
ea

.d
e

Projective Transformations

• Properties

• Parallel lines do not remain parallel
→ look at vertical lines

• Lines are mapped to lines
→ can be shown easily

• Ratios are not preserved
→ look at marked point

•

→ try it:

Computer Graphics 2020/21 - Going 3D 53

https://gdi.cs.fau.de/CG/cg/course/QuadMapping.html

Computer Graphics 2020/21 - Going 3D 54

Projective Transformations

• points can be mapped to points at infinity and vice versa

• Example from before 𝑀𝑀 =
2 0 0
0 1 0
0 1 2

• lim
𝑦𝑦→∞

𝑀𝑀 0
𝑦𝑦 = 0,1

Computer Graphics 2020/21 - Going 3D 55

Side Remark
Felix Klein’s “Erlanger Programm”
Aus Wikipedia „Erlanger Programm“
• Die elementare euklidische Geometrie oder Kongruenzgeometrie ist die

Geometrie des Anschauungsraumes, deren Transformationsgruppe die
Gruppe der Bewegungen (also der Translationen, Drehungen oder
Spiegelungen) ist, die alle längen- und winkeltreue Abbildungen sind.

• Verzichtet man bei den zugelassenen Transformationen auf die Längentreue
und lässt auch Punktstreckungen zu, so erhält man die äquiforme Gruppe
der Transformationen, die die Ähnlichkeits- oder äquiforme Geometrie
kennzeichnet.

• Verzichtet man auch auf die Winkeltreue, so gelangt man zur
Transformationsgruppe der bei Koordinatendarstellung linearen
Transformationen, d.h. der Kollineationen, die das Teilverhältnis je dreier
Punkte erhalten. Sie kennzeichnen die affine Geometrie.

• Fügt man schließlich zum Anschauungsraum noch unendlich ferne oder
uneigentliche Punkte als Schnittpunkte von Parallelen hinzu, so lassen die
Kollineationen in diesem Raum das Doppelverhältnis von je vier Punkten
invariant und bilden die Gruppe der projektiven Transformationen, deren
zugehörige Geometrie die projektive Geometrie ist.

56Computer Graphics 2020/21 - Going 3D

https://de.wikipedia.org/wiki/Erlanger_Programm

Side side remark

• Felix Klein is also the inventor of the Klein Bottle
• We will come back to this

later in this lecture

57

From Futurama

Computer Graphics 2020/21 - Going 3D

Next Lecture

• Real Perspective !

Computer Graphics 2020/21 - Going 3D 58

	Lecture #06��Going 3D
	Content
	Parallel Projection
	Parallel Projection Demo
	WebGL Parallel Projection
	Mapping 3D to 2D
	Parallel Projection
	Parallel Projection
	Mapping 3D to 2D
	Orthographic Projection
	Orthographic Projection
	3D Affine Transformations
	3D Affine Transformations
	3D Affine Transformations
	3D Affine Transformations
	Rotations in 3D
	3D Affine Transformations
	3D Affine Transformations
	Rotations in 3D
	Rotations in 3D
	Rotations in 3D
	Euler Rotations
	Euler Rotations
	Euler Rotations
	Euler Rotations
	Euler Angles and Gimbal Lock Demo
	Axis and Angle
	Axis and Angle
	Axis and Angle
	Rotations in 3D: Quaternions
	Rotations in 3D: Quaternions
	Rotations in 3D: Quaternions
	Rotations in 3D: Quaternions
	Rotations in 3D: Quaternions
	Rotations in 3D: Quaternions
	Affine Transformations
	Affine Transformations
	Perspective ?
	Homogeneous Coordinates
	Homogeneous Coordinates – Fun Facts
	Points and Vectors
	Points and Vectors
	Points and Vectors
	Points and Vectors
	Affine Transformations + Hom. Coord.
	Affine Normal Transformations
	Affine Normal Transformations
	Homogeneous Coordinates
	Homogeneous Coordinates
	Homogeneous Coordinates
	Projective Transformations
	Projection and Perspective
	Projective Transformations
	Foliennummer 54
	Projective Transformations
	Side Remark�Felix Klein’s “Erlanger Programm”
	Side side remark
	Next Lecture

