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• Given a primitive, find the pixels that cover this primitive

• Line primitive:

• Triangle primitive:
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What is Rasterization ?
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Rasterization - Primitives

• mostly, we want to fill objects → polygons
• A polygon is defined by an ordered set of

points (for now in 2D)

• Every 2D shape can be approximated by a polygon
• Every 2D polygon can be split into triangles

= Triangulation

• we use triangles as primitives,
sometimes also polygons
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Rasterization – Aliasing and Antialiasing

• For now: set pixel if its center is inside the shape
→ strong jaggies, well visible
→ this is one form of Aliasing
→ we will come back to aliasing later

• Other rasterization rules:

look at pixel’s center
average over some sample

positions within pixel compute coverage
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• Problem statement
• Given a 2D-polygon with 𝑛𝑛 vertices 𝑃𝑃1, … ,𝑃𝑃𝑛𝑛
• Color all pixels with center inside the polygon

5

Polygon Rasterization
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• Idea 1: rasterize boundary, fill interior → seed fill algorithm

• Rasterize boundary as seen before

• To fill, start at one point (seed), e.g. the center of a triangle
• Set it to fill color
• look at neighbor pixels:

if not set, call seed fill for these pixels recursively

• Recursive algorithm → BAD 

6

Seed-Fill Algorithm
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• Recursive algorithm

• Cons: Very deep recursion possible (requires large stack), rather inefficient

7

Seed-Fill Algorithm

seedfill (x,y,fillcolor)
if (color(x,y) == fillcolor)

return; //boundary reached or fillcolor already set
color(x,y) = fillcolor;
seedfill(x+1,y); //right
seedfill(x-1,y); //left
seedfill(x,y+1); //up
seedfill(x,y-1); //down
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Seed-Fill Algorithm

• Example
• 1: seed point
• Recursion tree
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• Apply for Polygon Rasterization:
• Draw boundary of polygon using Bresenham in unique color
• Pick a point inside
• Do seed fill from this point with this unique color
• Replace unique color by desired one

• Evaluation for rasterization of polygons
• Single color only (no shading, see later) 
• How to find seed position?
• Not very efficient !
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Seed-Fill Algorithm
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• Better: directly find the pixels within a polygon
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Polygon Rasterization
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• Brute force solution for triangles

• very wasteful for small triangles
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Triangle Test

for each pixel (x,y)
for each edge E

if (x,y) on wrong side of E
continue with next pixel

set pixel (x,y)
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• Brute force solution for triangles
• Improvement: Compute only for the screen bounding box of the triangle
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Triangle Test

𝑋𝑋𝑚𝑚𝑚𝑚𝑛𝑛,𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚,𝑌𝑌𝑚𝑚𝑚𝑚𝑛𝑛,𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚 of the triangle vertices
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for each pixel (x,y) in bounding box
for each edge E

if (x,y) on wrong side of E
continue with next pixel

set pixel (x,y)



Triangle Test

• Edge test:
• 𝑚𝑚𝑎𝑎 defines direction and separates plane

to “left” and “right” half
• normal vector 𝑛𝑛 defines these halves:

𝑛𝑛 = 𝑚𝑚2 − 𝑎𝑎2
𝑎𝑎1 − 𝑚𝑚1

points to the left

• edge test by using dot product:
𝑝𝑝 "left" ⟺ 𝑝𝑝− 𝑚𝑚 ∘ 𝑛𝑛 > 0 ⟺ 𝑝𝑝 ∘ 𝑚𝑚 − 𝑚𝑚 ∘ 𝑛𝑛 > 0

• with homogeneous coordinates:

𝑝𝑝 "left" ⟺
𝑝𝑝1
𝑝𝑝2
1

∘
𝑚𝑚2 − 𝑎𝑎2
𝑎𝑎1 − 𝑚𝑚1

𝑚𝑚1𝑎𝑎2 − 𝑚𝑚2𝑎𝑎1
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𝑚𝑚

𝑎𝑎

𝑝𝑝

𝑞𝑞
left side

right side
𝑛𝑛

“edge” vector
→ precompute and use within loop for fast test



Triangle Test

• Which is the “right” side ?
• Depends on orientation of triangle…

• Check orientation by computing determinant
(see also transformations/reflections)

• 𝐷𝐷 = 𝑎𝑎 − 𝑚𝑚 𝑐𝑐 − 𝑚𝑚 > 0
→ positive orientation
→ “left” is right

• We can also code this into the edge vector
→ simply negate edge vector in case of
negative orientation
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𝑎𝑎
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𝑚𝑚 right

𝑐𝑐

𝑎𝑎

𝑚𝑚 left

“negative” orientation
“clockwise”

“positive” orientation
“counterclockwise”



Triangle Test

• Edge test only tests “left” → does not work if orientation is changed (check!)
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Triangle Test
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• normalize 𝑛𝑛 in edge test → scalar product delivers the distance to the edge
• Can be used for anti-aliasing of triangle edges:

• How ?



Arbitrary Polygons

• Does this test work for arbitrary polygons ?
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• Alternative idea: scanline rasterization
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Polygon Rasterization
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• Idea Scanline Algorithm
• Proceed scanline by scanline from bottom to top
• Find intersections of scanline with polygon
• Fill these intersections

19

Scanline Algorithm
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• Data Structures
• Edge table (ET)

• List of all polygon edges (upwards only!)
• Content per edge
• Linked list
• Sorted by ylower

• Note that  1/m  is the x-increment
when stepping to above scanline
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Scanline Algorithm

𝑦𝑦𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑦𝑦𝑢𝑢𝑝𝑝𝑝𝑝𝑙𝑙𝑙𝑙 1/𝑚𝑚 = Δ𝑚𝑚/Δ𝑦𝑦 next

𝑃𝑃𝑚𝑚

𝑃𝑃𝑖𝑖+1

𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑦𝑦𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑦𝑦𝑢𝑢𝑝𝑝𝑝𝑝𝑙𝑙𝑙𝑙

Δ𝑚𝑚

Δ𝑦𝑦
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• Active Edge table (AET)
• All edges from ET that intersect current scanline
• Data per edge
• Current scanline of 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛
• Current intersection of edge with scanline: 𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖, 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛
• Sorted by 𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖
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Scanline Algorithm

𝑚𝑚𝑚𝑚𝑛𝑛𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖𝑙𝑙𝑐𝑐𝑖𝑖 𝑦𝑦𝑢𝑢𝑝𝑝𝑝𝑝𝑙𝑙𝑙𝑙 1/𝑚𝑚 = Δ𝑚𝑚/Δ𝑦𝑦 next

𝑃𝑃𝑚𝑚

𝑃𝑃𝑖𝑖+1

𝑚𝑚𝑚𝑚𝑛𝑛𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖𝑙𝑙𝑐𝑐𝑖𝑖

𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛
𝑦𝑦𝑢𝑢𝑝𝑝𝑝𝑝𝑙𝑙𝑙𝑙
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• Example
• Edge table
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Scanline Algorithm

P1

P2

P3

P4

yscan

x’ x’’

P3P4

P3P2

P4P1

P2P1

y3
34

34

yy
xx

−
−

x3 y4

y3
32

32

yy
xx

−
−

x3 y2

y4
41

41

yy
xx

−
−

x4 y1

y2
21

21

yy
xx

−
−

x2 y1

NIL
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• Current scanline 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛 ⇒ AET
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Scanline Algorithm

𝑃𝑃2

𝑃𝑃3

𝑃𝑃4

𝑦𝑦𝑖𝑖𝑐𝑐𝑚𝑚𝑛𝑛

𝑚𝑚𝑥 𝑚𝑚𝑥𝑥

𝑚𝑚𝑥 𝑦𝑦2 𝑚𝑚𝑥𝑥 𝑦𝑦4 NIL

𝑃𝑃3𝑃𝑃2
𝑃𝑃3𝑃𝑃4

𝑚𝑚2 − 𝑚𝑚3
𝑦𝑦2 − 𝑦𝑦3

𝑚𝑚3 − 𝑚𝑚4
𝑦𝑦3 − 𝑦𝑦4
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• Remark on incrementing  𝑚𝑚
• 𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 = 1

𝑚𝑚
yscan − ylower + xlower

• 𝑚𝑚𝑛𝑛𝑖𝑖𝑛𝑛 = 1
𝑚𝑚

𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛 + 1 − 𝑦𝑦𝑜𝑜𝑜𝑜𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑚𝑚𝑜𝑜𝑜𝑜𝑛𝑛𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 + 1
𝑚𝑚

• Where 𝑚𝑚 = 𝑦𝑦𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢−𝑦𝑦𝑙𝑙𝑙𝑙𝑙𝑙𝑢𝑢𝑢𝑢
𝑥𝑥𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢−𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙𝑢𝑢𝑢𝑢

• So the update is  𝑦𝑦 → 𝑦𝑦 + 1, 𝑚𝑚 → 𝑚𝑚 + 1
𝑚𝑚

24

Scanline Algorithm

Computer Graphics 2019/20 - Rasterization of Lines and Polygons



25

Scanline Algorithm

initialize ET
set AET to empty
set yscan to ylower of first entry in ET

move all edges from ET with yscan == ylower to AET

while ET not empty or AET not empty
sort AET for x
draw lines from (AET[0].x,yscan) to (AET[1].x,yscan),

from (AET[2].x,yscan) to (AET[3].x,yscan), ……
remove all edges from AET with yscan >= yupper
for all edges in AET

x:= x + 1/m
yscan += 1
move all edges from ET with yscan == ylower to AET
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Scanline Algorithm

edge ylower xlower yupper 1/m
e1 1 1 3 3

e2 1 1 7 1 / 2

e3 4 4 7 0

e4 3 7 5 -3

e5 4 4 5 2

e1

e2
e4

e3

e5

y

x(0,0)
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Scanline Algorithm

e1

e2
e4

e3

e5

y

x

edge ylower xlower yupper 1/m Next

e1 1 1 3 3 e2

e2 1 1 7 1 / 2 e4

e4 3 7 5 -3 e3

e3 4 4 7 0 e5

e5 4 4 5 2 NULL

(0,0)

ET: edge table, sorted on ylower

e1

e2
e4

e3

e5

y

x(0,0)
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Scanline Algorithm

edge xinters yupper 1/m Next

e1 1 3 3 e2

e2 1 7 1 / 2 NULL

(0,0)

First scanline yscan = 1
AET: edge table, sorted on xintersect

yscan

edge ylower xlower yupper 1/m Next

e4 3 7 5 -3 e3

e3 4 4 7 0 e5

e5 4 4 5 2 NULL

ET: edge table, sorted on ylower

e1

e2
e4

e3

e5

y

x(0,0)
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Scanline Algorithm

edge xinters yupper 1/m Next

e2 3/2 7 1 / 2 e1

e1 4 3 3 NULL

Scanline yscan = 2
AET: edge table, sorted on xintersect

edge ylower xlower yupper 1/m Next

e4 3 7 5 -3 e3

e3 4 4 7 0 e5

e5 4 4 5 2 NULL

ET: edge table, sorted on ylower

e1

e2
e4

e3

e5

y

x(0,0)

yscan
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Scanline Algorithm

edge xinters yupper 1/m Next

e2 2 7 1 / 2 e1

e4 7 5 -3 NULL

Scanline yscan = 3
AET: edge table, sorted on xintersect

yscan

edge ylower xlower yupper 1/m Next

e3 4 4 7 0 e5

e5 4 4 5 2 NULL

ET: edge table, sorted on ylower

e1

e2
e4

e3

e5

y

x(0,0)
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• Set pixels inside polygon to which color?   →  “Shading”

• We could define color gradients

• e.g. SVG linear gradients

• e.g. SVG radial gradients

31

Scanline Algorithm

ht
tp

s:
//

de
ve

lo
pe

r.
mo
zi

ll
a.

or
g/

en
-

US
/d

oc
s/

We
b/

SV
G/

Tu
to

ri
al

/G
ra

di
en

ts
Computer Graphics 2019/20 - Rasterization of Lines and Polygons



Scanline Algorithm

• for our purpose, we want to define color values at the vertices of the 
polygon and interpolate these
→ Gouraud Shading

• Later on, we want to interpolate
also other attributes (normals,
texture coordinates, …)
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• Interpolating intensities (or other attributes)

• Any point 𝑝𝑝 inside the triangle 𝑚𝑚𝑎𝑎𝑐𝑐
can be described as an affine combination
of the vertices

𝑝𝑝 = 𝛼𝛼𝑚𝑚 + 𝛽𝛽𝑎𝑎 + 𝛾𝛾𝑐𝑐

with 𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾 = 1
and 0 < 𝛼𝛼,𝛽𝛽, 𝛾𝛾 < 1

• 𝛼𝛼,𝛽𝛽, 𝛾𝛾 are the Barycentric Coordinates of 𝑝𝑝 with respect to triangle 𝑚𝑚𝑎𝑎𝑐𝑐

33

Gouraud Shading

𝑚𝑚

𝑐𝑐

𝑎𝑎𝑝𝑝

𝛼𝛼

𝛾𝛾
𝛽𝛽
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Gouraud Shading

• If we know the barycentric coordinates of a point 𝑝𝑝 inside a triangle
𝑝𝑝 = 𝛼𝛼𝑚𝑚 + 𝛽𝛽𝑎𝑎 + 𝛾𝛾𝑐𝑐

• we can interpolate colors with the same weights:
𝑐𝑐𝑙𝑙𝑙𝑙𝑝𝑝 = 𝛼𝛼𝑐𝑐𝑙𝑙𝑙𝑙𝑠𝑠 + 𝛽𝛽𝑐𝑐𝑙𝑙𝑙𝑙𝑏𝑏 + 𝛾𝛾𝑐𝑐𝑙𝑙𝑙𝑙𝑠𝑠

→ linear interpolation

𝑚𝑚
𝑐𝑐𝑙𝑙𝑙𝑙𝑠𝑠

𝑐𝑐

𝑎𝑎
𝑐𝑐𝑙𝑙𝑙𝑙𝑏𝑏

𝑐𝑐𝑙𝑙𝑙𝑙𝑠𝑠

𝑐𝑐𝑙𝑙𝑙𝑙𝑝𝑝 =?
𝑝𝑝
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Gouraud Shading

• Algorithmically:
• do linear interpolation of the attributes along the edges
• within a span, interpolate linearily

• This is not bilinear, but linear !

scanline

𝑐𝑐𝑙𝑙𝑙𝑙𝑠𝑠

𝑐𝑐𝑙𝑙𝑙𝑙𝑏𝑏

𝑐𝑐𝑙𝑙𝑙𝑙𝑠𝑠

𝑐𝑐𝑙𝑙𝑙𝑙1 𝑐𝑐𝑙𝑙𝑙𝑙2𝑐𝑐𝑙𝑙𝑙𝑙
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Gouraud Shading

• Can be well combined with scanline rasterization
• with each edge, store increment of attribute when going one scanline up

→ same idea as using 1/𝑚𝑚 to update 𝑚𝑚
• do not only update 𝑚𝑚 by 1/𝑚𝑚, but also attributes
• when rasterizing a span, compute attribute updates for 𝑚𝑚 → 𝑚𝑚 + 1

scanline

𝑐𝑐𝑙𝑙𝑙𝑙𝑠𝑠

𝑐𝑐𝑙𝑙𝑙𝑙𝑏𝑏

𝑐𝑐𝑙𝑙𝑙𝑙𝑠𝑠

𝑐𝑐𝑙𝑙𝑙𝑙1 𝑐𝑐𝑙𝑙𝑙𝑙2𝑐𝑐𝑙𝑙𝑙𝑙
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• Problems
• Shading only rotation invariant for triangles
• for more than 3 vertices: color inside polygon changes with rotation → BAD !

• Example:

→ triangulate and rasterize triangles

→ but then the color depends on the triangulation…
37

Polygon Shading

scanline scanline
A

B

C

D C A

D

B

color depends on
A,B,D

color depends on
A,C,D
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Polygon Shading

• Problem: Vertex inconsistencies
• Polygon 1

• Color at 𝑐𝑐 comes from interpolation between 𝑚𝑚 and 𝑎𝑎
• Polygons 2 and 3

• 𝑐𝑐 is separate vertex

• Color seam along edge 𝑚𝑚𝑎𝑎 if color in 𝑐𝑐 not chosen
correctly

• Solution: avoid such hanging nodes, they also make other problems!
(e.g., they can result in holes during rasterization)

Computer Graphics 2019/20 - Rasterization of Lines and Polygons 38

1
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3

a

b

c



Next Lecture

• An intro to GPU rendering
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