
Lecture #04

Polygon Rasterization

Computer Graphics
Winter Term 2020/21

Marc Stamminger / Roberto Grosso

• Given a primitive, find the pixels that cover this primitive

• Line primitive:

• Triangle primitive:

2

What is Rasterization ?

Computer Graphics 2019/20 - Rasterization of Lines and Polygons

Rasterization - Primitives

• mostly, we want to fill objects → polygons
• A polygon is defined by an ordered set of

points (for now in 2D)

• Every 2D shape can be approximated by a polygon
• Every 2D polygon can be split into triangles

= Triangulation

• we use triangles as primitives,
sometimes also polygons

au
to

de
sk

.c
om

au
to

de
sk

.c
om

𝑝𝑝1
𝑝𝑝2

𝑝𝑝3
𝑝𝑝4

𝑝𝑝5

𝑝𝑝1
𝑝𝑝2

𝑝𝑝3
𝑝𝑝4

𝑝𝑝5

Computer Graphics 2019/20 - Rasterization of Lines and Polygons 3

Rasterization – Aliasing and Antialiasing

• For now: set pixel if its center is inside the shape
→ strong jaggies, well visible
→ this is one form of Aliasing
→ we will come back to aliasing later

• Other rasterization rules:

look at pixel’s center
average over some sample

positions within pixel compute coverage

Computer Graphics 2019/20 - Rasterization of Lines and Polygons 4

• Problem statement
• Given a 2D-polygon with 𝑛𝑛 vertices 𝑃𝑃1, … ,𝑃𝑃𝑛𝑛
• Color all pixels with center inside the polygon

5

Polygon Rasterization

Computer Graphics 2019/20 - Rasterization of Lines and Polygons

• Idea 1: rasterize boundary, fill interior → seed fill algorithm

• Rasterize boundary as seen before

• To fill, start at one point (seed), e.g. the center of a triangle
• Set it to fill color
• look at neighbor pixels:

if not set, call seed fill for these pixels recursively

• Recursive algorithm → BAD

6

Seed-Fill Algorithm

Computer Graphics 2019/20 - Rasterization of Lines and Polygons

• Recursive algorithm

• Cons: Very deep recursion possible (requires large stack), rather inefficient

7

Seed-Fill Algorithm

seedfill (x,y,fillcolor)
if (color(x,y) == fillcolor)

return; //boundary reached or fillcolor already set
color(x,y) = fillcolor;
seedfill(x+1,y); //right
seedfill(x-1,y); //left
seedfill(x,y+1); //up
seedfill(x,y-1); //down

Computer Graphics 2019/20 - Rasterization of Lines and Polygons

Seed-Fill Algorithm

• Example
• 1: seed point
• Recursion tree

8

10 9 8 7 6 5

11 12 1 2 3 4

18 13 14 15 16 17

1

2

3

4
5

6
7

8
9

10
11

x
x

x
x

x
x

x

x

x
x

……

Computer Graphics 2019/20 - Rasterization of Lines and Polygons

• Apply for Polygon Rasterization:
• Draw boundary of polygon using Bresenham in unique color
• Pick a point inside
• Do seed fill from this point with this unique color
• Replace unique color by desired one

• Evaluation for rasterization of polygons
• Single color only (no shading, see later)
• How to find seed position?
• Not very efficient !

9

Seed-Fill Algorithm

Computer Graphics 2019/20 - Rasterization of Lines and Polygons

• Better: directly find the pixels within a polygon

10

Polygon Rasterization

Computer Graphics 2019/20 - Rasterization of Lines and Polygons

• Brute force solution for triangles

• very wasteful for small triangles

11

Triangle Test

for each pixel (x,y)
for each edge E

if (x,y) on wrong side of E
continue with next pixel

set pixel (x,y)

Computer Graphics 2019/20 - Rasterization of Lines and Polygons

• Brute force solution for triangles
• Improvement: Compute only for the screen bounding box of the triangle

12

Triangle Test

𝑋𝑋𝑚𝑚𝑚𝑚𝑛𝑛,𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚,𝑌𝑌𝑚𝑚𝑚𝑚𝑛𝑛,𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚 of the triangle vertices
Computer Graphics 2019/20 - Rasterization of Lines and Polygons

for each pixel (x,y) in bounding box
for each edge E

if (x,y) on wrong side of E
continue with next pixel

set pixel (x,y)

Triangle Test

• Edge test:
• 𝑚𝑚𝑎𝑎 defines direction and separates plane

to “left” and “right” half
• normal vector 𝑛𝑛 defines these halves:

𝑛𝑛 = 𝑚𝑚2 − 𝑎𝑎2
𝑎𝑎1 − 𝑚𝑚1

points to the left

• edge test by using dot product:
𝑝𝑝 "left" ⟺ 𝑝𝑝− 𝑚𝑚 ∘ 𝑛𝑛 > 0 ⟺ 𝑝𝑝 ∘ 𝑚𝑚 − 𝑚𝑚 ∘ 𝑛𝑛 > 0

• with homogeneous coordinates:

𝑝𝑝 "left" ⟺
𝑝𝑝1
𝑝𝑝2
1

∘
𝑚𝑚2 − 𝑎𝑎2
𝑎𝑎1 − 𝑚𝑚1

𝑚𝑚1𝑎𝑎2 − 𝑚𝑚2𝑎𝑎1

Computer Graphics 2019/20 - Rasterization of Lines and Polygons 13

𝑚𝑚

𝑎𝑎

𝑝𝑝

𝑞𝑞
left side

right side
𝑛𝑛

“edge” vector
→ precompute and use within loop for fast test

Triangle Test

• Which is the “right” side ?
• Depends on orientation of triangle…

• Check orientation by computing determinant
(see also transformations/reflections)

• 𝐷𝐷 = 𝑎𝑎 − 𝑚𝑚 𝑐𝑐 − 𝑚𝑚 > 0
→ positive orientation
→ “left” is right

• We can also code this into the edge vector
→ simply negate edge vector in case of
negative orientation

Computer Graphics 2019/20 - Rasterization of Lines and Polygons 14

𝑎𝑎

𝑐𝑐

𝑚𝑚 right

𝑐𝑐

𝑎𝑎

𝑚𝑚 left

“negative” orientation
“clockwise”

“positive” orientation
“counterclockwise”

Triangle Test

• Edge test only tests “left” → does not work if orientation is changed (check!)

Computer Graphics 2019/20 - Rasterization of Lines and Polygons 15

Triangle Test

Computer Graphics 2019/20 - Rasterization of Lines and Polygons 16

• normalize 𝑛𝑛 in edge test → scalar product delivers the distance to the edge
• Can be used for anti-aliasing of triangle edges:

• How ?

Arbitrary Polygons

• Does this test work for arbitrary polygons ?

Computer Graphics 2019/20 - Rasterization of Lines and Polygons 17

• Alternative idea: scanline rasterization

18

Polygon Rasterization

Computer Graphics 2019/20 - Rasterization of Lines and Polygons

• Idea Scanline Algorithm
• Proceed scanline by scanline from bottom to top
• Find intersections of scanline with polygon
• Fill these intersections

19

Scanline Algorithm

Computer Graphics 2019/20 - Rasterization of Lines and Polygons

• Data Structures
• Edge table (ET)

• List of all polygon edges (upwards only!)
• Content per edge
• Linked list
• Sorted by ylower

• Note that 1/m is the x-increment
when stepping to above scanline

20

Scanline Algorithm

𝑦𝑦𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑦𝑦𝑢𝑢𝑝𝑝𝑝𝑝𝑙𝑙𝑙𝑙 1/𝑚𝑚 = Δ𝑚𝑚/Δ𝑦𝑦 next

𝑃𝑃𝑚𝑚

𝑃𝑃𝑖𝑖+1

𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑦𝑦𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑦𝑦𝑢𝑢𝑝𝑝𝑝𝑝𝑙𝑙𝑙𝑙

Δ𝑚𝑚

Δ𝑦𝑦

Computer Graphics 2019/20 - Rasterization of Lines and Polygons

• Active Edge table (AET)
• All edges from ET that intersect current scanline
• Data per edge
• Current scanline of 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛
• Current intersection of edge with scanline: 𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖, 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛
• Sorted by 𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖

21

Scanline Algorithm

𝑚𝑚𝑚𝑚𝑛𝑛𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖𝑙𝑙𝑐𝑐𝑖𝑖 𝑦𝑦𝑢𝑢𝑝𝑝𝑝𝑝𝑙𝑙𝑙𝑙 1/𝑚𝑚 = Δ𝑚𝑚/Δ𝑦𝑦 next

𝑃𝑃𝑚𝑚

𝑃𝑃𝑖𝑖+1

𝑚𝑚𝑚𝑚𝑛𝑛𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖𝑙𝑙𝑐𝑐𝑖𝑖

𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛
𝑦𝑦𝑢𝑢𝑝𝑝𝑝𝑝𝑙𝑙𝑙𝑙

Computer Graphics 2019/20 - Rasterization of Lines and Polygons

• Example
• Edge table

22

Scanline Algorithm

P1

P2

P3

P4

yscan

x’ x’’

P3P4

P3P2

P4P1

P2P1

y3
34

34

yy
xx

−
−

x3 y4

y3
32

32

yy
xx

−
−

x3 y2

y4
41

41

yy
xx

−
−

x4 y1

y2
21

21

yy
xx

−
−

x2 y1

NIL

Computer Graphics 2019/20 - Rasterization of Lines and Polygons

• Current scanline 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛 ⇒ AET

23

Scanline Algorithm

𝑃𝑃2

𝑃𝑃3

𝑃𝑃4

𝑦𝑦𝑖𝑖𝑐𝑐𝑚𝑚𝑛𝑛

𝑚𝑚𝑥 𝑚𝑚𝑥𝑥

𝑚𝑚𝑥 𝑦𝑦2 𝑚𝑚𝑥𝑥 𝑦𝑦4 NIL

𝑃𝑃3𝑃𝑃2
𝑃𝑃3𝑃𝑃4

𝑚𝑚2 − 𝑚𝑚3
𝑦𝑦2 − 𝑦𝑦3

𝑚𝑚3 − 𝑚𝑚4
𝑦𝑦3 − 𝑦𝑦4

Computer Graphics 2019/20 - Rasterization of Lines and Polygons

• Remark on incrementing 𝑚𝑚
• 𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 = 1

𝑚𝑚
yscan − ylower + xlower

• 𝑚𝑚𝑛𝑛𝑖𝑖𝑛𝑛 = 1
𝑚𝑚

𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛 + 1 − 𝑦𝑦𝑜𝑜𝑜𝑜𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑚𝑚𝑜𝑜𝑜𝑜𝑛𝑛𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 + 1
𝑚𝑚

• Where 𝑚𝑚 = 𝑦𝑦𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢−𝑦𝑦𝑙𝑙𝑙𝑙𝑙𝑙𝑢𝑢𝑢𝑢
𝑥𝑥𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢−𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙𝑢𝑢𝑢𝑢

• So the update is 𝑦𝑦 → 𝑦𝑦 + 1, 𝑚𝑚 → 𝑚𝑚 + 1
𝑚𝑚

24

Scanline Algorithm

Computer Graphics 2019/20 - Rasterization of Lines and Polygons

25

Scanline Algorithm

initialize ET
set AET to empty
set yscan to ylower of first entry in ET

move all edges from ET with yscan == ylower to AET

while ET not empty or AET not empty
sort AET for x
draw lines from (AET[0].x,yscan) to (AET[1].x,yscan),

from (AET[2].x,yscan) to (AET[3].x,yscan), ……
remove all edges from AET with yscan >= yupper
for all edges in AET

x:= x + 1/m
yscan += 1
move all edges from ET with yscan == ylower to AET

Computer Graphics 2019/20 - Rasterization of Lines and Polygons

26

Scanline Algorithm

edge ylower xlower yupper 1/m
e1 1 1 3 3

e2 1 1 7 1 / 2

e3 4 4 7 0

e4 3 7 5 -3

e5 4 4 5 2

e1

e2
e4

e3

e5

y

x(0,0)

Computer Graphics 2019/20 - Rasterization of Lines and Polygons

27

Scanline Algorithm

e1

e2
e4

e3

e5

y

x

edge ylower xlower yupper 1/m Next

e1 1 1 3 3 e2

e2 1 1 7 1 / 2 e4

e4 3 7 5 -3 e3

e3 4 4 7 0 e5

e5 4 4 5 2 NULL

(0,0)

ET: edge table, sorted on ylower

e1

e2
e4

e3

e5

y

x(0,0)

Computer Graphics 2019/20 - Rasterization of Lines and Polygons

28

Scanline Algorithm

edge xinters yupper 1/m Next

e1 1 3 3 e2

e2 1 7 1 / 2 NULL

(0,0)

First scanline yscan = 1
AET: edge table, sorted on xintersect

yscan

edge ylower xlower yupper 1/m Next

e4 3 7 5 -3 e3

e3 4 4 7 0 e5

e5 4 4 5 2 NULL

ET: edge table, sorted on ylower

e1

e2
e4

e3

e5

y

x(0,0)

Computer Graphics 2019/20 - Rasterization of Lines and Polygons

29

Scanline Algorithm

edge xinters yupper 1/m Next

e2 3/2 7 1 / 2 e1

e1 4 3 3 NULL

Scanline yscan = 2
AET: edge table, sorted on xintersect

edge ylower xlower yupper 1/m Next

e4 3 7 5 -3 e3

e3 4 4 7 0 e5

e5 4 4 5 2 NULL

ET: edge table, sorted on ylower

e1

e2
e4

e3

e5

y

x(0,0)

yscan

Computer Graphics 2019/20 - Rasterization of Lines and Polygons

30

Scanline Algorithm

edge xinters yupper 1/m Next

e2 2 7 1 / 2 e1

e4 7 5 -3 NULL

Scanline yscan = 3
AET: edge table, sorted on xintersect

yscan

edge ylower xlower yupper 1/m Next

e3 4 4 7 0 e5

e5 4 4 5 2 NULL

ET: edge table, sorted on ylower

e1

e2
e4

e3

e5

y

x(0,0)

Computer Graphics 2019/20 - Rasterization of Lines and Polygons

• Set pixels inside polygon to which color? → “Shading”

• We could define color gradients

• e.g. SVG linear gradients

• e.g. SVG radial gradients

31

Scanline Algorithm

ht
tp

s:
//

de
ve

lo
pe

r.
mo
zi

ll
a.

or
g/

en
-

US
/d

oc
s/

We
b/

SV
G/

Tu
to

ri
al

/G
ra

di
en

ts
Computer Graphics 2019/20 - Rasterization of Lines and Polygons

Scanline Algorithm

• for our purpose, we want to define color values at the vertices of the
polygon and interpolate these
→ Gouraud Shading

• Later on, we want to interpolate
also other attributes (normals,
texture coordinates, …)

Computer Graphics 2019/20 - Rasterization of Lines and Polygons 32

• Interpolating intensities (or other attributes)

• Any point 𝑝𝑝 inside the triangle 𝑚𝑚𝑎𝑎𝑐𝑐
can be described as an affine combination
of the vertices

𝑝𝑝 = 𝛼𝛼𝑚𝑚 + 𝛽𝛽𝑎𝑎 + 𝛾𝛾𝑐𝑐

with 𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾 = 1
and 0 < 𝛼𝛼,𝛽𝛽, 𝛾𝛾 < 1

• 𝛼𝛼,𝛽𝛽, 𝛾𝛾 are the Barycentric Coordinates of 𝑝𝑝 with respect to triangle 𝑚𝑚𝑎𝑎𝑐𝑐

33

Gouraud Shading

𝑚𝑚

𝑐𝑐

𝑎𝑎𝑝𝑝

𝛼𝛼

𝛾𝛾
𝛽𝛽

Computer Graphics 2019/20 - Rasterization of Lines and Polygons

Gouraud Shading

• If we know the barycentric coordinates of a point 𝑝𝑝 inside a triangle
𝑝𝑝 = 𝛼𝛼𝑚𝑚 + 𝛽𝛽𝑎𝑎 + 𝛾𝛾𝑐𝑐

• we can interpolate colors with the same weights:
𝑐𝑐𝑙𝑙𝑙𝑙𝑝𝑝 = 𝛼𝛼𝑐𝑐𝑙𝑙𝑙𝑙𝑠𝑠 + 𝛽𝛽𝑐𝑐𝑙𝑙𝑙𝑙𝑏𝑏 + 𝛾𝛾𝑐𝑐𝑙𝑙𝑙𝑙𝑠𝑠

→ linear interpolation

𝑚𝑚
𝑐𝑐𝑙𝑙𝑙𝑙𝑠𝑠

𝑐𝑐

𝑎𝑎
𝑐𝑐𝑙𝑙𝑙𝑙𝑏𝑏

𝑐𝑐𝑙𝑙𝑙𝑙𝑠𝑠

𝑐𝑐𝑙𝑙𝑙𝑙𝑝𝑝 =?
𝑝𝑝

Computer Graphics 2019/20 - Rasterization of Lines and Polygons 34

Gouraud Shading

• Algorithmically:
• do linear interpolation of the attributes along the edges
• within a span, interpolate linearily

• This is not bilinear, but linear !

scanline

𝑐𝑐𝑙𝑙𝑙𝑙𝑠𝑠

𝑐𝑐𝑙𝑙𝑙𝑙𝑏𝑏

𝑐𝑐𝑙𝑙𝑙𝑙𝑠𝑠

𝑐𝑐𝑙𝑙𝑙𝑙1 𝑐𝑐𝑙𝑙𝑙𝑙2𝑐𝑐𝑙𝑙𝑙𝑙

Computer Graphics 2019/20 - Rasterization of Lines and Polygons 35

Gouraud Shading

• Can be well combined with scanline rasterization
• with each edge, store increment of attribute when going one scanline up

→ same idea as using 1/𝑚𝑚 to update 𝑚𝑚
• do not only update 𝑚𝑚 by 1/𝑚𝑚, but also attributes
• when rasterizing a span, compute attribute updates for 𝑚𝑚 → 𝑚𝑚 + 1

scanline

𝑐𝑐𝑙𝑙𝑙𝑙𝑠𝑠

𝑐𝑐𝑙𝑙𝑙𝑙𝑏𝑏

𝑐𝑐𝑙𝑙𝑙𝑙𝑠𝑠

𝑐𝑐𝑙𝑙𝑙𝑙1 𝑐𝑐𝑙𝑙𝑙𝑙2𝑐𝑐𝑙𝑙𝑙𝑙

Computer Graphics 2019/20 - Rasterization of Lines and Polygons 36

• Problems
• Shading only rotation invariant for triangles
• for more than 3 vertices: color inside polygon changes with rotation → BAD !

• Example:

→ triangulate and rasterize triangles

→ but then the color depends on the triangulation…
37

Polygon Shading

scanline scanline
A

B

C

D C A

D

B

color depends on
A,B,D

color depends on
A,C,D

Computer Graphics 2019/20 - Rasterization of Lines and Polygons

Polygon Shading

• Problem: Vertex inconsistencies
• Polygon 1

• Color at 𝑐𝑐 comes from interpolation between 𝑚𝑚 and 𝑎𝑎
• Polygons 2 and 3

• 𝑐𝑐 is separate vertex

• Color seam along edge 𝑚𝑚𝑎𝑎 if color in 𝑐𝑐 not chosen
correctly

• Solution: avoid such hanging nodes, they also make other problems!
(e.g., they can result in holes during rasterization)

Computer Graphics 2019/20 - Rasterization of Lines and Polygons 38

1

2

3

a

b

c

Next Lecture

• An intro to GPU rendering

Computer Graphics 2019/20 - Rasterization of Lines and Polygons 39

	Lecture #04��Polygon Rasterization�
	What is Rasterization ?
	Rasterization - Primitives
	Rasterization – Aliasing and Antialiasing
	Polygon Rasterization
	Seed-Fill Algorithm
	Seed-Fill Algorithm
	Seed-Fill Algorithm
	Seed-Fill Algorithm
	Polygon Rasterization
	Triangle Test
	Triangle Test
	Triangle Test
	Triangle Test
	Triangle Test
	Triangle Test
	Arbitrary Polygons
	Polygon Rasterization
	Scanline Algorithm
	Scanline Algorithm
	Scanline Algorithm
	Scanline Algorithm
	Scanline Algorithm
	Scanline Algorithm
	Scanline Algorithm
	Scanline Algorithm
	Scanline Algorithm
	Scanline Algorithm
	Scanline Algorithm
	Scanline Algorithm
	Scanline Algorithm
	Scanline Algorithm
	Gouraud Shading
	Gouraud Shading
	Gouraud Shading
	Gouraud Shading
	Polygon Shading
	Polygon Shading
	Next Lecture

