Lecture #04

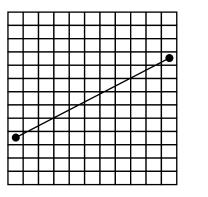
Polygon Rasterization

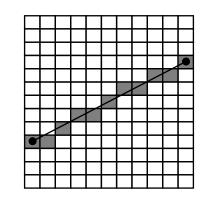
Computer Graphics Winter Term 2020/21

Marc Stamminger / Roberto Grosso

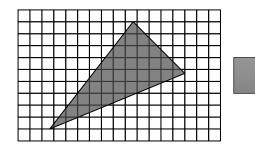
What is Rasterization ?

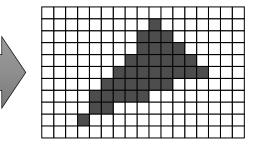
- Given a primitive, find the pixels that cover this primitive
- Line primitive:





• Triangle primitive:

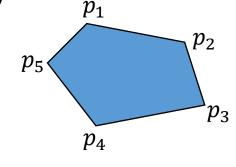


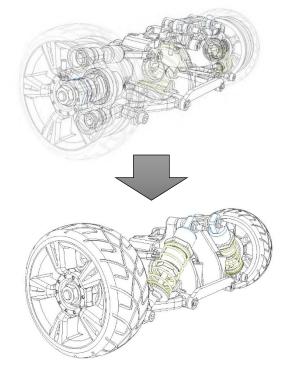


autodesk.com

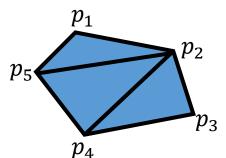
Rasterization - Primitives

- mostly, we want to fill objects \rightarrow polygons
- A **polygon** is defined by an ordered set of points (for now in 2D)





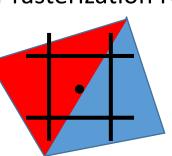
- Every 2D shape can be approximated by a polygon
- Every 2D polygon can be split into triangles
 = Triangulation p₁
- we use triangles as primitives, sometimes also polygons



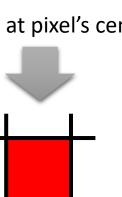
autodesk.com

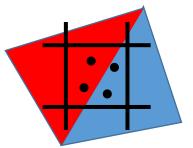
Rasterization – Aliasing and Antialiasing

- For now: set pixel if its center is inside the shape
 - \rightarrow strong jaggies, well visible
 - \rightarrow this is one form of **Aliasing**
 - \rightarrow we will come back to aliasing later
- Other rasterization rules:

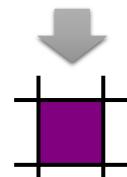


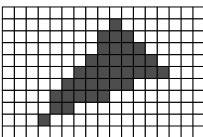
look at pixel's center

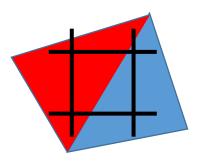




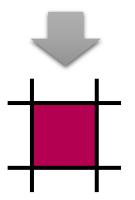
average over some sample positions within pixel





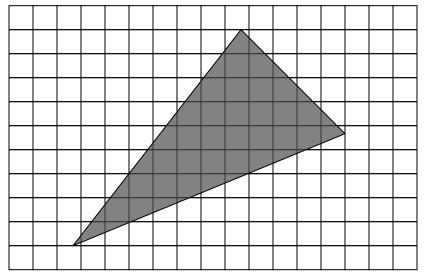


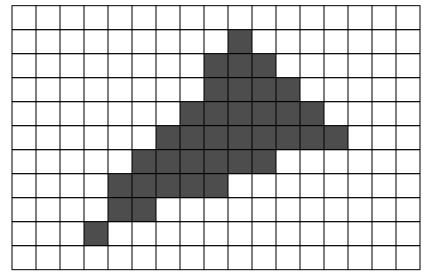
compute coverage



Polygon Rasterization

- Problem statement
 - Given a 2D-polygon with n vertices P_1, \ldots, P_n
 - Color all pixels with center inside the polygon





- Idea 1: rasterize boundary, fill interior \rightarrow seed fill algorithm
- Rasterize boundary as seen before
- To fill, start at one point (seed), e.g. the center of a triangle
 - Set it to fill color
 - look at neighbor pixels: if not set, call seed fill for these pixels recursively
- Recursive algorithm \rightarrow BAD \odot

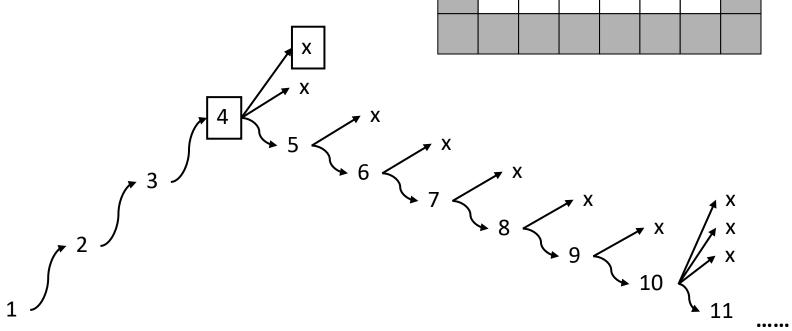
• Recursive algorithm

```
seedfill (x,y,fillcolor)
    if (color(x,y) == fillcolor)
        return; //boundary reached or fillcolor already set
    color(x,y) = fillcolor;
    seedfill(x+1,y); //right
    seedfill(x-1,y); //left
    seedfill(x,y+1); //up
    seedfill(x,y-1); //down
```

• Cons: Very deep recursion possible (requires large stack), rather inefficient

- Example
 - 1: seed point
 - Recursion tree

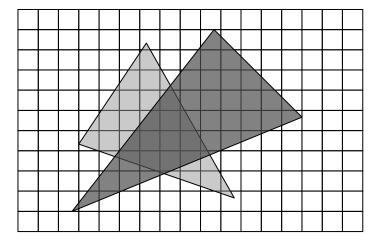
10	9	8	7	6	5	
11	12	1	2	3	4	
18	13	14	15	16	17	

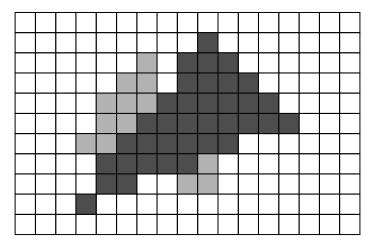


- Apply for Polygon Rasterization:
 - Draw boundary of polygon using Bresenham in unique color
 - Pick a point inside
 - Do seed fill from this point with this unique color
 - Replace unique color by desired one
- Evaluation for rasterization of polygons
 - Single color only (no shading, see later)
 - How to find seed position?
 - Not very efficient !

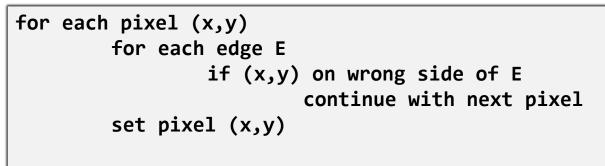
Polygon Rasterization

• Better: directly find the pixels within a polygon

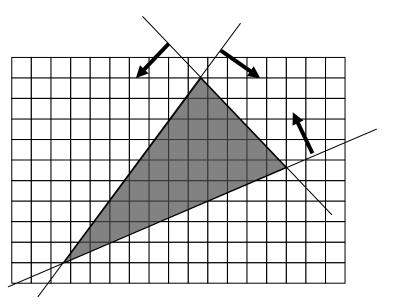




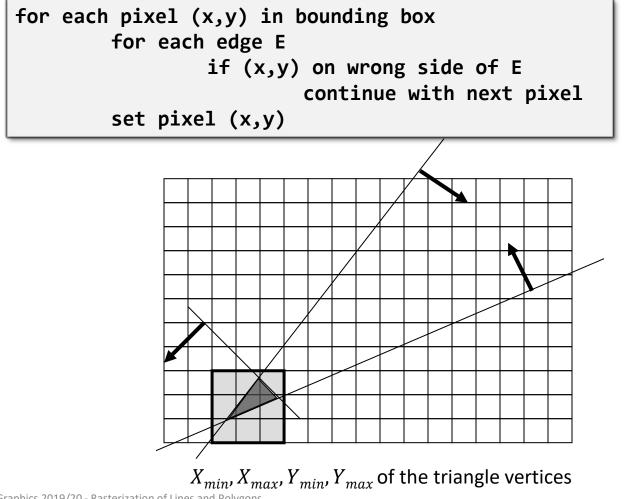
• Brute force solution for triangles



• very wasteful for small triangles



- Brute force solution for triangles
 - Improvement: Compute only for the screen bounding box of the triangle



- Edge test:
 - *ab* defines direction and separates plane to "left" and "right" half
 - normal vector *n* defines these halves:

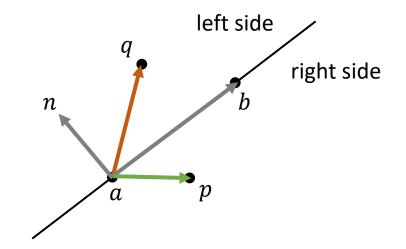
$$n = \begin{pmatrix} a_2 - b_2 \\ b_1 - a_1 \end{pmatrix}$$
 points to the left

$$p "left" \Leftrightarrow (p - a) \circ n > 0 \Leftrightarrow p \circ a - a \circ n > 0$$

• with homogeneous coordinates:

$$p \text{"left"} \Leftrightarrow \begin{pmatrix} p_1 \\ p_2 \\ 1 \end{pmatrix} \circ \begin{pmatrix} a_2 - b_2 \\ b_1 - a_1 \\ a_1 b_2 - a_2 b_1 \end{pmatrix}$$

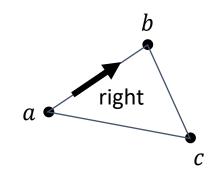
"edge" vector→ precompute and use within loop for fast test



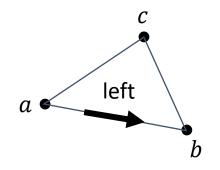
- Which is the "right" side ?
- Depends on orientation of triangle...
- Check orientation by computing determinant (see also transformations/reflections)

•
$$D = |b - a \quad c - a| > 0$$

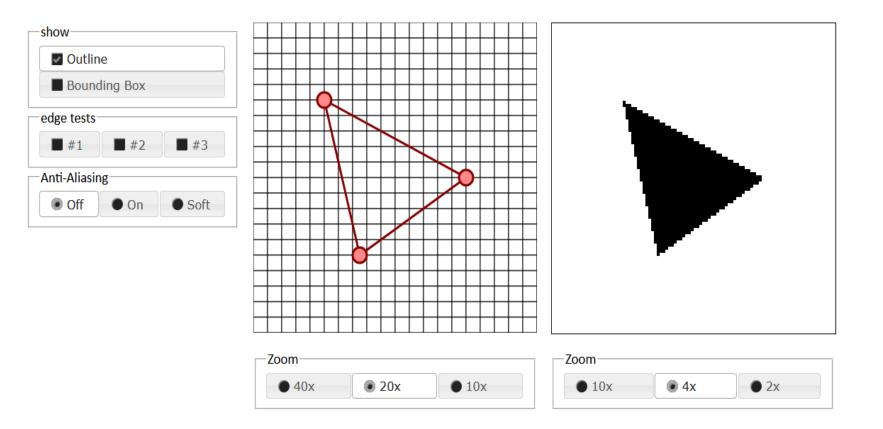
- \rightarrow positive orientation
- \rightarrow "left" is right
- We can also code this into the edge vector
 → simply negate edge vector in case of
 negative orientation



"negative" orientation "clockwise"

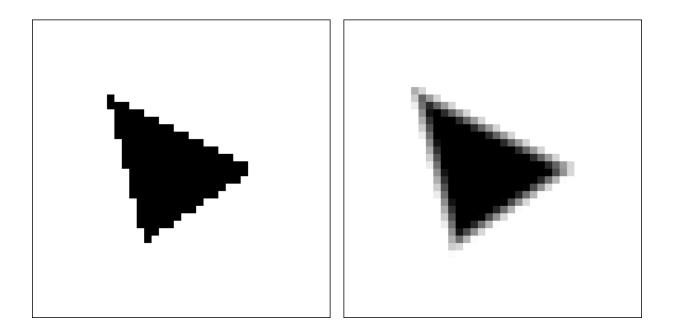


"positive" orientation "counterclockwise"



• Edge test only tests "left" \rightarrow does not work if orientation is changed (check!)

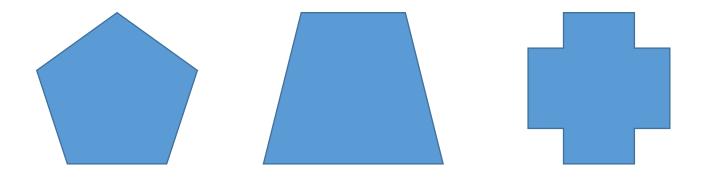
- normalize n in edge test \rightarrow scalar product delivers the distance to the edge
- Can be used for anti-aliasing of triangle edges:



• How ?

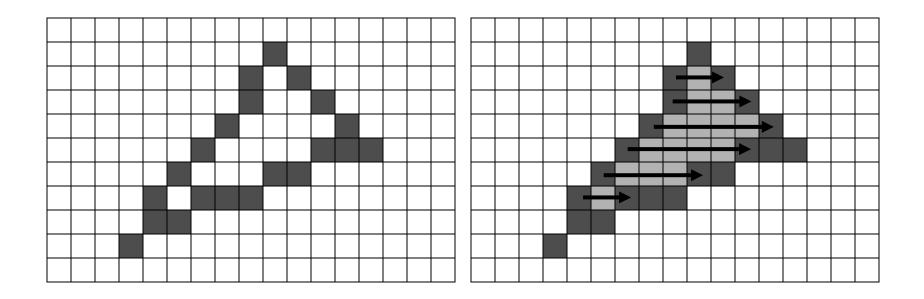
Arbitrary Polygons

• Does this test work for arbitrary polygons ?

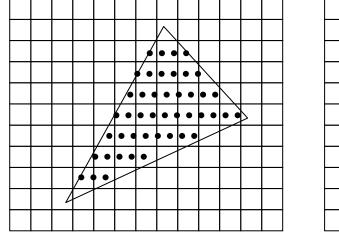


Polygon Rasterization

• Alternative idea: scanline rasterization

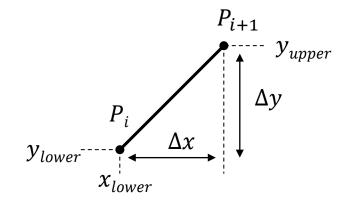


- Idea Scanline Algorithm
 - Proceed scanline by scanline from bottom to top
 - Find intersections of scanline with polygon
 - Fill these intersections





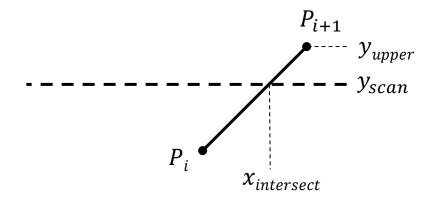
- Data Structures
 - Edge table (ET)
 - List of all polygon edges (upwards only!)
 - Content per edge
 - Linked list
 - Sorted by ylower
 - Note that 1/m is the x-increment when stepping to above scanline

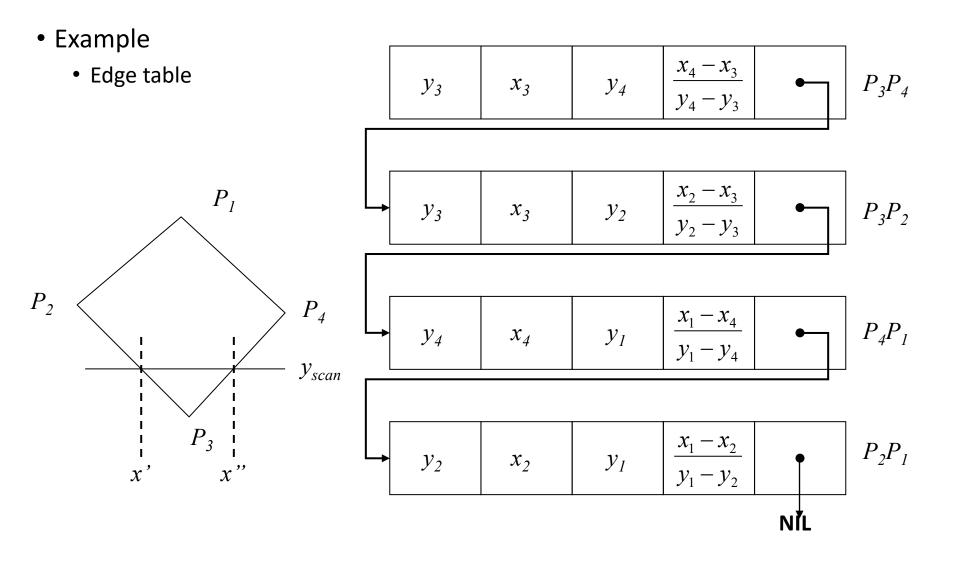


$$y_{lower}$$
 x_{lower} y_{upper} $1/m = \Delta x/\Delta y$ \longrightarrow next

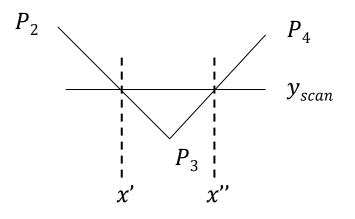
- Active Edge table (AET)
 - All edges from ET that intersect current scanline
 - Data per edge
 - Current scanline of *y*_{scan}
 - Current intersection of edge with scanline: $x_{intersect}$, y_{scan}
 - Sorted by *x*_{intersect}

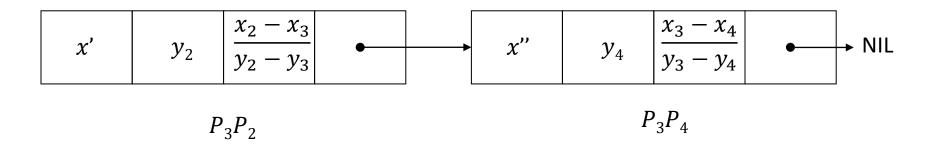
$$x_{intersect}$$
 y_{upper} $1/m = \Delta x/\Delta y \bullet \to \text{next}$





• Current scanline $y_{scan} \Rightarrow AET$





• Remark on incrementing *x*

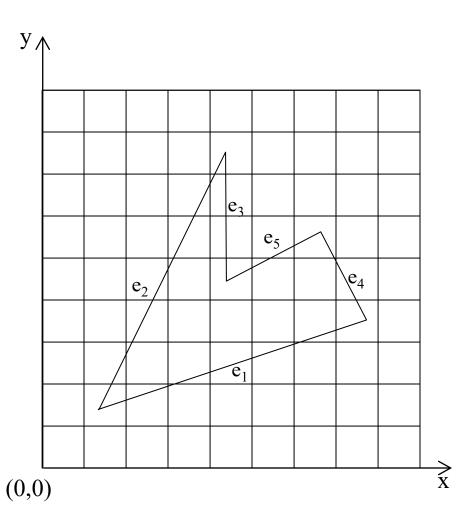
•
$$x_{old} = \frac{1}{m}(y_{scan} - y_{lower}) + x_{lower}$$

• $x_{new} = \frac{1}{m}(y_{scan} + 1 - y_{lower}) + x_{lower} = x_{old} + \frac{1}{m}$
• Where $m = \frac{y_{upper} - y_{lower}}{x_{upper} - x_{lower}}$

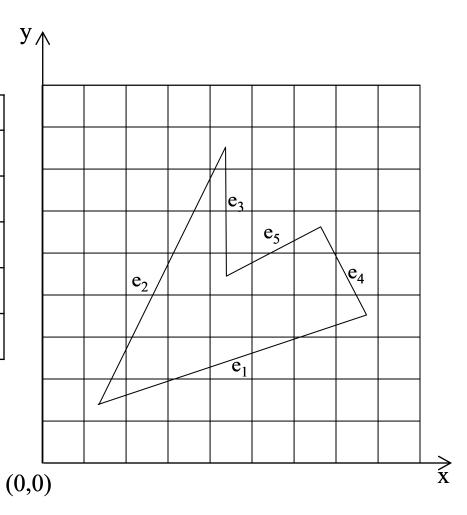
• So the update is $y \to y + 1$, $x \to x + \frac{1}{m}$

```
initialize ET
set AET to empty
set yscan to ylower of first entry in ET
    move all edges from ET with yscan == ylower to AET
while ET not empty or AET not empty
    sort AET for x
    draw lines from (AET[0].x,yscan) to (AET[1].x,yscan),
                   from (AET[2].x,yscan) to (AET[3].x,yscan), .....
    remove all edges from AET with yscan >= yupper
    for all edges in AET
        x := x + 1/m
    yscan += 1
    move all edges from ET with yscan == ylower to AET
```

edge	\mathcal{Y}_{lower}	<i>x</i> _{lower}	\mathcal{Y}_{upper}	1/m
<i>e</i> ₁	1	1	3	3
<i>e</i> ₂	1	1	7	1 / 2
<i>e</i> ₃	4	4	7	0
<i>e</i> ₄	3	7	5	-3
<i>e</i> ₅	4	4	5	2



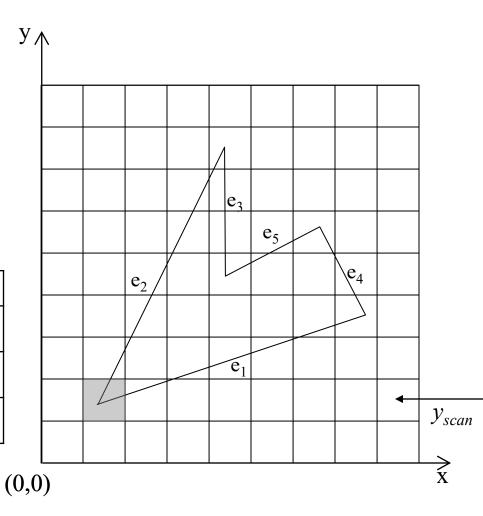
edge	\mathcal{Y}_{lower}	<i>x</i> _{lower}	\mathcal{Y}_{upper}	1/m	Next
<i>e</i> ₁	1	1	3	3	<i>e</i> ₂
<i>e</i> ₂	1	1	7	1 / 2	<i>e</i> ₄
<i>e</i> ₄	3	7	5	-3	<i>e</i> ₃
<i>e</i> ₃	4	4	7	0	<i>e</i> ₅
<i>e</i> ₅	4	4	5	2	NULL



First scanline $y_{scan} = 1$ AET: edge table, sorted on $x_{intersect}$

edge	<i>x</i> _{inters}	\mathcal{Y}_{upper}	1/m	Next
e_1	1	3	3	<i>e</i> ₂
<i>e</i> ₂	1	7	1 / 2	NULL

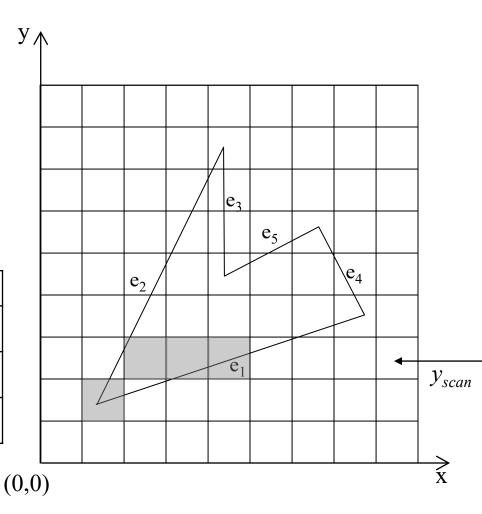
edge	\mathcal{Y}_{lower}	<i>x</i> _{lower}	\mathcal{Y}_{upper}	1/m	Next
e_4	3	7	5	-3	<i>e</i> ₃
e ₃	4	4	7	0	<i>e</i> ₅
<i>e</i> ₅	4	4	5	2	NULL



Scanline $y_{scan} = 2$ AET: edge table, sorted on $x_{intersect}$

edge	<i>x</i> _{inters}	\mathcal{Y}_{upper}	1/m	Next
<i>e</i> ₂	3/2	7	1 / 2	e ₁
<i>e</i> ₁	4	3	3	NULL

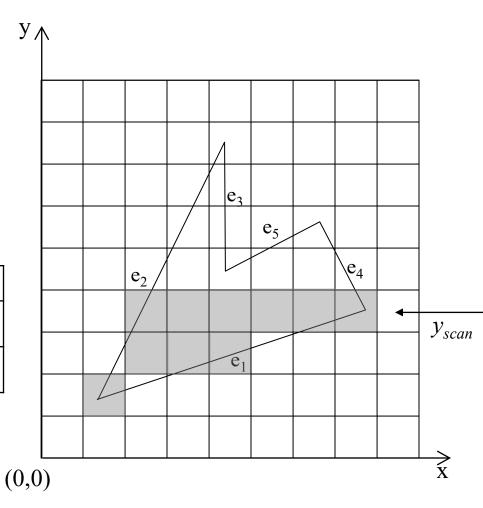
edge	\mathcal{Y}_{lower}	<i>x</i> _{lower}	\mathcal{Y}_{upper}	1/m	Next
<i>e</i> ₄	3	7	5	-3	<i>e</i> ₃
<i>e</i> ₃	4	4	7	0	<i>e</i> ₅
<i>e</i> ₅	4	4	5	2	NULL



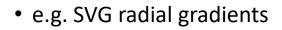
Scanline $y_{scan} = 3$ AET: edge table, sorted on $x_{intersect}$

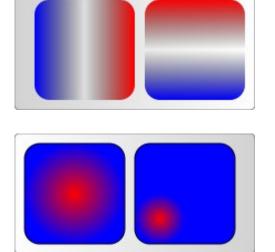
edge	<i>x</i> _{inters}	\mathcal{Y}_{upper}	1/m	Next
e_2	2	7	1 / 2	e ₁
e ₄	7	5	-3	NULL

edge	\mathcal{Y}_{lower}	<i>x</i> _{lower}	\mathcal{Y}_{upper}	1/m	Next
<i>e</i> ₃	4	4	7	0	<i>e</i> ₅
<i>e</i> ₅	4	4	5	2	NULL



- Set pixels inside polygon to which color? \rightarrow "Shading"
- We could define color gradients
 - e.g. SVG linear gradients





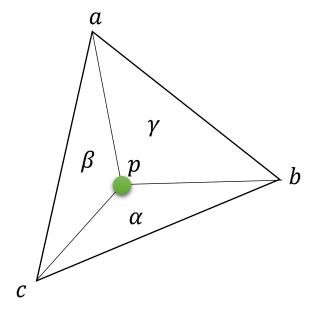
https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Gradients

- for our purpose, we want to define color values at the vertices of the polygon and interpolate these
 → Gouraud Shading
- Later on, we want to interpolate also other attributes (normals, texture coordinates, ...)

- Interpolating intensities (or other attributes)
- Any point p inside the triangle abc can be described as an affine combination of the vertices

$$p = \alpha a + \beta b + \gamma c$$

with $\alpha + \beta + \gamma = 1$ and $0 < \alpha, \beta, \gamma < 1$

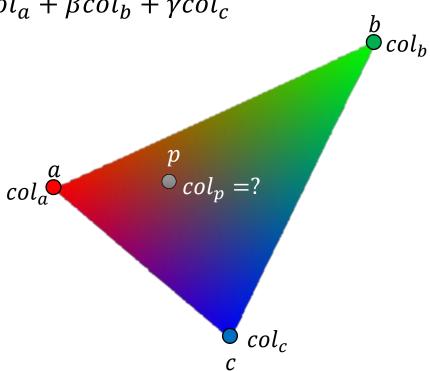


• α , β , γ are the **Barycentric Coordinates** of p with respect to triangle abc

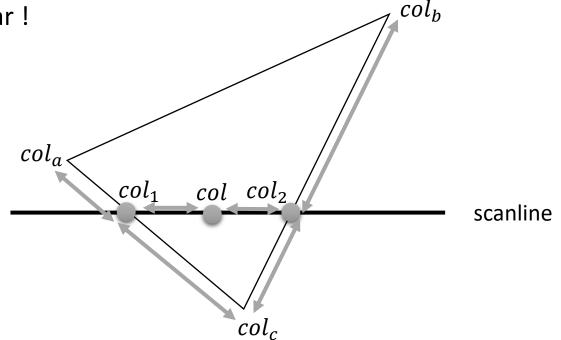
- If we know the barycentric coordinates of a point p inside a triangle $p = \alpha a + \beta b + \gamma c$
- we can interpolate colors with the same weights:

$$col_p = \alpha col_a + \beta col_b + \gamma col_c$$

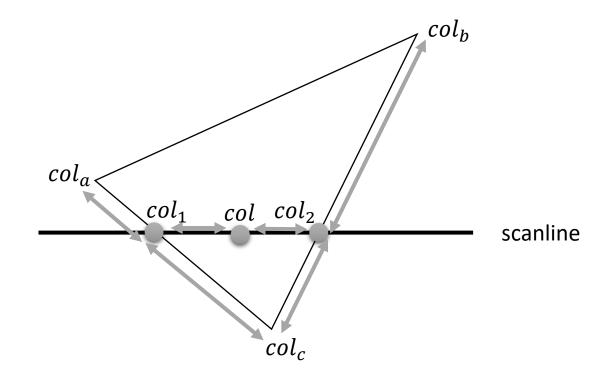
 \rightarrow linear interpolation



- Algorithmically:
 - do linear interpolation of the attributes along the edges
 - within a span, interpolate linearily
- This is not bilinear, but linear !

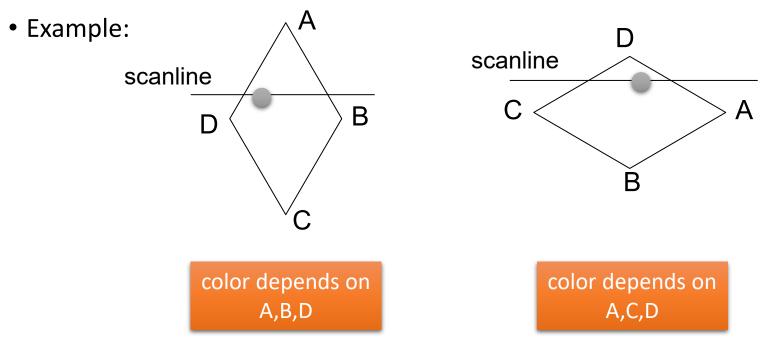


- Can be well combined with scanline rasterization
 - with each edge, store increment of attribute when going one scanline up \rightarrow same idea as using 1/m to update x
 - do not only update x by 1/m, but also attributes
 - when rasterizing a span, compute attribute updates for $x \rightarrow x + 1$



Polygon Shading

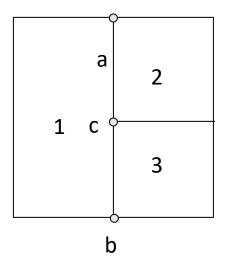
- Problems
 - Shading only rotation invariant for triangles
 - for more than 3 vertices: color inside polygon changes with rotation \rightarrow BAD !



- \rightarrow triangulate and rasterize triangles
- \rightarrow but then the color depends on the triangulation...

Polygon Shading

- Problem: Vertex inconsistencies
 - Polygon 1
 - Color at *c* comes from interpolation between *a* and *b*
 - Polygons 2 and 3
 - *c* is separate vertex
 - Color seam along edge *ab* if color in *c* not chosen correctly



• Solution: avoid such hanging nodes, they also make other problems! (e.g., they can result in holes during rasterization)

Next Lecture

• An intro to GPU rendering