Lecture \#03

Line Rasterization

Computer Graphics
Winter Term 2020/21

Marc Stamminger / Roberto Grosso

What is Rasterization ?

- Given a primitive, find the pixels that cover this primitive
- Triangle primitive:

- Line primitive:

Rasterization - Primitives

- Which primitives are of interest ?
- Lines:
- very widely used in CAD (computer aided design) \rightarrow wireframe models

- every curve can be approximated by lines

Rasterization - Primitives

- mostly, we want to fill objects \rightarrow polygons
- A polygon is defined by an ordered set of points (for now in 2D)

- Every shape can be approximated by a polygon
- Every polygon can be split into triangles = Triangulation

Rasterization

- This lecture: Rasterization of lines (+ circles)
- Next Lecture: Rasterization of filled objects (Triangles, Polygons)

Line Drawing

- Line Rasterization
- Given: Segment endpoints (integers $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right)$)
- Identify: Set of pixels (x, y) that represent the line segment

Line Drawing

- An iterative version

- renders x1-x0 pixels for all lines \rightarrow but length varies by $\sqrt{2}$

Line Drawing

- Doesn't work if slope > 1
- and for x0 > x1, ...
- \rightarrow differentiate cases

Line Drawing

- Incremental version - even simpler

Render Fan

- only one addition within loop

Line Drawing

- A recursive line rasterizer

Code	Recursive	
	// use setPixel (x, y) to set a pixel (x, y)	
$\begin{array}{r} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{array}$	```function drawLine(x0,y0,x1,y1) { var xm = (x0 + x1) / 2; var ym = (y0 + y1) / 2; setPixel(xm,ym); if (x1-x0 > 1 \|	y1-y0 > 1) { drawLine(x0,y0,xm,ym); drawLine(xm,ym, x1,y1); } }```

- \rightarrow for our purpose: slow, pixels may be set multiple times...

Line Drawing

- Line Rasterization: Problem statement (without anti-aliasing)

Mark all pixels touched by the line. Line appears to be thicker

blue pixels should not be considered

Better (thinnest) approximation of the line

Line Drawing

- Problem Statement
- How to draw a line from $P_{0}=\left(x_{0}, y_{0}\right)$ to $P_{1}=\left(x_{1}, y_{1}\right)$
- Examples
- $(0,0)$ to $(6,6)$

Slope $=6 / 6$

- $(0,0)$ to $(8,4)$

Slope $=4 / 8$

Line Drawing

- Simplification
- Slope $m: 0<m<1$ where $m=\Delta y / \Delta x=\left(y_{1}-y_{0}\right) /\left(x_{1}-x_{0}\right)$
- $x_{0}<x<x_{1}: \quad y=y_{0}+m\left(x-x_{0}\right)$
- all other cases can be treated similarly

Line Drawing

- Slope $m: 0<m<1$ where $m=\frac{\Delta y}{\Delta x}=\frac{y_{1}-y_{0}}{x_{1}-x_{0}}$

Line Drawing

- Brute force algorithm
- $x_{0}, x_{1}, y_{0}, y_{1}$ are integers
- Direct version

```
float m = (float)(y1 - y0) / (x1 - x0)
for int x = x0 to x1
    float y = y0 + m(x - x0)
    setPixel (x, round(y))
```


Line Drawing

- Simple algorithm, incremental version
- Remark:

$$
\begin{aligned}
& y_{n}=y_{0}+m\left(x_{n}-x_{0}\right) \\
& y_{n+1}=y_{0}+m\left(x_{n}+1-x_{0}\right)=y_{n}+m
\end{aligned}
$$

```
float m = (float)(y1 - y0)/(x1 - x0)
float y = y0
int x = x0
while (x <= x1)
    setPixel(x, round(y))
    x = x + 1
    y = y + m
```


Line Drawing: Bresenham

- Bresenham-Algorithm based on incremental version (see right)
- goal
- avoid float-operations
- use integer only
- if $0<m<1$ and $x_{0}<x_{1}$:
- y remains either the same
- or is increased by one
- Two cases:

East

Case 2:

North-East

- How to decide between E and NE ?

```
// incremental line drawing
float m = (float)(y1 - y0)/(x1 - x0)
float y = y0
int x = x0
while (x <= x1)
    setPixel(x, round(y))
    x = x + 1
    y = y + m
```



```
// Bresenham line drawing
int y = y0
int x = x0
while (x <= x1)
    setPixel(x,y)
    x = x + 1
    if (some condition)
    y = y + 1
```


Line Drawing: Bresenham

- The implicit equation for a line

$$
F(x, y)=\left(y-y_{0}\right)-m\left(x-x_{0}\right)
$$

- $F(x, y)=0:(x, y)$ is on the line
- $F(x, y)<0:(x, y)$ is below the line
- $F(x, y)>0:(x, y)$ is above the line

Line Drawing: Bresenham

- Midpoint decider
\rightarrow look at midpoint between E and NE pixel
- if line below midpoint GO EAST

- That is:

```
// Bresenham line drawing
int y = y0
int x = x0
while (x <= x1)
    setPixel(x,y)
    x = x + 1
    if (F(x,y+0.5) < 0)
    y=y+1
```


Line Drawing: Bresenham

- Performance considerations:

Making the evaluation of the decider faster

- Incremental
- Integer operation only
- But F is rational value (m is rational)...
- But we can multiply F with arbitrary positive value \rightarrow get rid of denominator of m
- $F(x, y)=y\left(x_{1}-x_{0}\right)+x\left(y_{0}-y_{1}\right)+y_{1} x_{0}-y_{0} x_{1}=$ $\Delta x\left(y-y_{0}\right)-\Delta y\left(x-x_{0}\right)$

Line Drawing: Bresenham

- Incremental algorithm: Compute F incrementally in variable d \rightarrow First step in loop

$$
d=F\left(x_{0}+1, y 0+1 / 2\right)
$$

- Within loop, if $d<0$
\rightarrow NE: $\left(x_{0}, y_{0}\right) \rightarrow\left(x_{0}+1, y_{0}+1\right)$
- Next test will be at $\left(x_{0}+2, y_{0}+1+1 / 2\right)$
- $F\left(x_{0}+2, y_{0}+\frac{3}{2}\right)=\ldots=F\left(x_{0}+1, y_{0}+1 / 2\right)+\Delta x-\Delta y$
$\rightarrow \rightarrow$ Incremental update of d: $\quad d_{\text {new }}=d_{\text {old }}+\Delta x-\Delta y$
- Analog, if $d>0$
$\rightarrow \mathrm{E}:\left(x_{0}, y_{0}\right) \rightarrow\left(x_{0}+1, y_{0}\right)$
- Next test will be at $\left(x_{0}+2, y_{0}+\frac{1}{2}\right)$
- $F\left(x_{0}+2, y_{0}+\frac{1}{2}\right)=\cdots=F\left(x_{0}+1, y+\frac{1}{2}\right)+\left(y_{0}-y_{1}\right)$
- Incremental update of $d: \quad d_{\text {new }}=d_{\text {old }}-\Delta y$

Line Drawing: Bresenham

- Algorithm

```
int y = y0
int x
float d = F(x0+1,y0+0.5) // decider
for x = x0 to x = x1
    draw_pixel(x,y)
    if (d < 0) then // go NE
        y = y + 1
        d = d + (x1 - x0) + (y0 - y1)
    else // go E
        d = d + (y0 - y1)
```


Line Drawing: Bresenham

- Initialization of D has a 0.5 -parameter \rightarrow initial value multiple of 0.5
- All other increments are integer
- \rightarrow multiple with $2 \rightarrow$ integer only

```
int x = x0
int y = y0
int }\Deltax=x1 - x
int \Deltay = y1 - y0
int D = \Deltax - 2\Deltay, \DeltaDE = -2\Deltay , \DeltaDNE = 2(\Deltax - \Deltay)
while (x <= x1)
    draw_pixel(x,y)
    x = x + 1
    if(D< 0) {
        y = y + 1
        D = D + \DNE
    }
    else
        D = D + \DeltaDE
```


Line Drawing: Bresenham

- handling multiple slopes: consider eight regions: octants

Line Drawing: Bresenham

- Remark: negative slopes
- update on y is different
- if line above midpoint update to $(x+1, y)$
- otherwise update to $(x+1, y-1)$
- update on decision variable is subtly different:
$F\left(x+1, y+\frac{1}{2}\right)>0 \Rightarrow$ goto $(x+1, y-1)$ and next test at $\left(x+2, y-\frac{3}{2}\right)$
$F\left(x+1, y+\frac{1}{2}\right) \leq 0 \Rightarrow$ goto $(x+1, y)$ and next test at $\left(x+2, y-\frac{1}{2}\right)$

Line Drawing: Bresenham

- One possible strategy
- if $x_{0}>x_{1}$: swap start and end points
- If $|m|>1$: swap coordinates, i.e. $x \leftrightarrow y$
- if $m<0$: set step in y to be -1
- use $\Delta x=x_{1}-x_{0}$ and $\Delta y=\left|y_{1}-y_{0}\right|$

Line Drawing

- Problems:
- The length of a line is measured in screen units = pixels
- Ideally: number of pixels of scan-converted line equal length
- If line longer than no. of pixels, it looks fragmented
- Bresenham algorithm generates number of pixels $=\max (\Delta x, \Delta y)$
- Assume $|m|<1$ number of pixels $=L \cos \alpha$ where L length of line

Line Drawing: Anti-Aliasing

- Problems
- Line intensity varies with slope

Horizontal line:
1 pixel / unit length

Diagonal line:
$1 / \sqrt{2}$ pixel / unit length
\rightarrow on grey scale screen: modify intensity by $\frac{1}{\sqrt{2} \cos \alpha}$

Line Drawing: Anti-Aliasing

- "Jaggies" \rightarrow typical aliasing artifact
- In the original Bresenham, only one pixel is drawn per incremental step. The desired intensity (here: black) is entirely assigned to that pixel.
- Can also result in patterns
\rightarrow Moire effect (Wikipedia)

Line Drawing: Anti-Aliasing

- Antialiased Bresenham
- With antialiasing, (up to) two pixels are drawn per incremental step (and column). The intensity of these pixels sums up to the desired intensity.

Line Drawing: Anti-Aliasing

- In order to decide which pixels we should draw and how to choose the weighting factors, we need the signed distance a between the true line and the midpoint between the E- and the NE-pixel.

The distance can be computed from the decision variable d :

$$
a=\frac{d}{2 \Delta x}
$$

Line Drawing: Anti-Aliasing

- Which pixels should be drawn?
- Case $d \geq 0$ (choose E)

draw pixels:
$(x+1, y)$ with intensity factor $1-|a+0.5|$
$(x+1, y+1)$ with intensity factor $|a+0.5|$

draw pixels:
$(x+1, y)$ with intensity factor $1-|a+0.5|$
$(x+1, y-1)$ with intensity factor $|a+0.5|$

Line Drawing: Anti-Aliasing

- Case $d<0$ (choose NE)

$$
a>-0.5
$$

draw pixels:
$(x+1, y+1)$ with intensity $1-|a-0.5|$ $(x+1, y)$ with intensity $|a-0.5|$

$$
a<-0.5
$$

draw pixels:
$(x+1, y+1)$ with intensity $1-|a-0.5|$ $(x+1, y+2)$ with intensity $|a-0.5|$

Further Reading - Circle Drawing

- Circle
- Center $c=\left(x_{c}, y_{c}\right)$
- Circle of radius r

$$
\left(x-x_{c}\right)^{2}+\left(y-y_{c}\right)^{2}=r^{2}
$$

- For now:
- Center at $(0,0)$
- Eight-fold symmetry
- 1st octant: $0 \leq y<x$
- 2nd octant: $0<=x<y$
- 3rd octant: $0<=-x<y$
- 4th octant: $0<=y<-x$
- 5th octant: $0<=-y<-x$
- 6th octant: $0<=-x<-y$
- 7th octant: $0<=x<-y$
- 8th octant: $0<=-y<x$

Further Reading - Circle Drawing

- Draw pixels using the 8 -fold symmetry add offset $c=\left(x_{c}, y_{c}\right)$ to center circle at $\left(x_{c}, y_{c}\right)$

```
// The pixel (x,y) is in the 2nd octant
void draw8pixel(xc,yc,x,y)
{
    draw_pixel(xc+x,yc+y); // (x,y) 2nd octant
    draw_pixel(xc+y,yc+x); // 1st octant
    draw_pixel(xc-x,yc+y); // 3rd octant
    draw_pixel(xc-y,yc+x); // 4th octant
}
```


Further Reading - Circle Drawing

- The 2nd octant: $m<0 ;|m|<1 ; 0<x<y$
- The implicit function

$$
F(x, y)=\left(x-x_{c}\right)^{2}+\left(y-y_{c}\right)^{2}-r^{2}
$$

- The circle

$$
\left\{x \in \mathbb{R}^{2}: F(x, y)=0\right\}
$$

- Properties
- $F(x, y)>0 \rightarrow(x, y)$ is outside/above the circle
- $F(x, y) \leq 0 \rightarrow(x, y)$ is inside/below the circle

Further Reading - Circle Drawing

- The decider variable
- $d=F(x+1, y-1 / 2)$
- The increment
- $d>0$ ((x, y) outside the circle)
- $(x, y) \rightarrow(x+1, y-1)$
- $d<0$ ((x, y) inside the circle)
- $(x, y) \rightarrow(x+1, y)$

Further Reading - Circle Drawing

- The increment of the decider variable
- Set $d=F(x+1, y-1 / 2)$
- Case $d<0$; next test at $(x+2, y-1 / 2)$
- $F\left(x+2, y-\frac{1}{2}\right)-F\left(x+1, y-\frac{1}{2}\right)=\cdots=2 x+3$
- $\Rightarrow d=d+2 x+3$
- Case $d>0$; next test at $\left(x+2, y-\frac{3}{2}\right)$
- $F\left(x+2, y-\frac{3}{2}\right)-F\left(x+1, y-\frac{1}{2}\right)=\cdots=2(x-y)+5$
- $\Rightarrow d=d+2(x-y)+5$

Further Reading - Circle Drawing

- The increment of the decider variable
- The increment of d depends on the position (x, y)
- Introduce new variables E and $S E$ (E : east, SE: south east)

$$
E=2 x+3 ; S E=2(x-y)+5
$$

- E and $S E$ can be computed incrementally
\rightarrow incrementally compute the increment
- If $d<0: d=d+E ; E=E+2 ; S E=S E+2$
- If $d>0: d=d+S E ; E=E+2 ; S E=S E+4$

Further Reading - Circle Drawing

- Remarks
- Use $d=F(x+1, y-1 / 2)-1 / 4$
- Use only integer precision, x, y and r are taken to be ints

Further Reading - Circle Drawing

```
// Bresenham. 77
void Bresenham_Circle(xc,yc,r)
{
    x = 0; y = r;
    d = 1 - r; e = 3; se = 5 - 2*r;
    do {
        draw8pixel(xc,yc,x,y);
        if d < 0 then
        d = d + e;
        e = e + 2;
        se = se + 2;
        x = x + 1;
        else
        d = d + se;
        e = e + 2;
        se = se + 4;
        x = x + 1;
        y = y - 1;
    } while (x <= y)
}
```


Next Lecture

- Polygon Rasterization

