Lecture #03

Line Rasterization

Computer Graphics
Winter Term 2020/21

Marc Stamminger / Roberto Grosso

What is Rasterization ?

e Given a primitive, find the pixels that cover this primitive

* Triangle primitive:

"

* Line primitive:

Computer Graphics 2019/20 - Line Rasterization

Rasterization - Primitives

* Which primitives are of interest ?

e Lines:

 very widely used in CAD (computer aided design) - wireframe models

autodesk.com

e every curve can be approximated by lines

Computer Graphics 2019/20 - Line Rasterization

Rasterization - Primitives

* mostly, we want to fill objects - polygons

* A polygon is defined by an ordered set of
points (for now in 2D)

P1

* Every shape can be approximated by a polygon

* Every polygon can be split into triangles
= Triangulation P1

P2
Ps

P3

Computer Graphics 2019/20 - Line Rasterization p4’

autodesk.com

autodesk.com

Rasterization

* This lecture: Rasterization of lines (+ circles)

* Next Lecture: Rasterization of filled objects (Triangles, Polygons)

Line Drawing

* Line Rasterization
* Given: Segment endpoints (integers (x,, ¥,), (X1, Y1))
* |dentify: Set of pixels (x, y) that represent the line segment

o
(X0, Y0)

Computer Graphics 2019/20 - Line Rasterization

Line Drawing

* An iterative version

Code Equation >

// use setPixel(x,y) to set a pixel (x,y)
» function drawLine(x@,y8,x1,v1) {
varm = (yl - y@) / (x1 - x@);
for (var x = x@; X < X1; X++)
setPixel(x, m*(x-x@) + y@);

[« 2 LV [R VU R S)

« renders x1-x0 pixels for all lines = but length varies by v/2

Computer Graphics 2019/20 - Line Rasterization

>>2>

Render

Fan

Line Drawing

* Doesn‘t work if slope > 1

e and for x0 > x1, ...

> differentiate cases

Line Drawing

* Incremental version — even simpler

Code

Incremental x

3

O o N oYU B
4

}

1 // use setPixel(x,y) to set a pixel (x,y)
2~ function drawLine(x@,y6,x1,y1) {

var m = (yl - yo) / (x1 - x@);
var y = ye;
for (var x = x8; x < x1; x++) {
setPixel(x,y);
y +=m;

}

* only one addition within loop

Computer Graphics 2019/20 - Line Rasterization

e

Render

Fan

Line Drawing

* A recursive line rasterizer

Code Recursive ¥

1 // use setPixel(x,y) to set a pixel (x,y)

2+ function drawLine(x8,yd,x1,v1) {
3 var xm = (x@ + x1) / 2;
var ym = (ye + y1) / 2;

4
5 setPixel(xm,ym);

6 if (x1-x8 > 1 || y1-ye > 1) {
. drawLine(x@,y@,xm,ym);

8 drawLine(xm,ym,x1,y1);

9
Q

¥

* = for our purpose: slow, pixels may be set multiple times...

Computer Graphics 2019/20 - Line Rasterization

>

Render

Fan

10

Line Drawing

* Line Rasterization: Problem statement (without anti-aliasing)

Mark all pixels touched blue pixels Better (thinnest)
by the line. Line appears should not be approximation
to be thicker considered of the line

Computer Graphics 2019/20 - Line Rasterization 11

Line Drawing

* Problem Statement
* How to draw a line from P, = (x,,¥,) to Py = (x4, ¥4)

e Examples o
« (0,0) to (6,6) ° Slope = 6/6
o
o
o
o
* (0,0)to (8,4) Slope = 4/8

Line Drawing

 Simplification
e Slopem: 0 < m < 1 wherem =Ay/Ax = (y1 — yo)/(x1 — X¢)
* Xy < x < XxX;t Yy =y, + m(x- xp)
* all other cases can be treated similarly

Line Drawing

* Slopem: 0 <m <] wherem =

Ay _ Y1=Yo

Ax X1—Xo
(x. v.)
"1/ 1/

~

Yo

\—/

Computer Graphics 2019/20 - Line Rasterization

14

Line Drawing

 Brute force algorithm
* Xg,X1, Yo, Y1 are integers
* Direct version

float m = (float)(yl - y@) / (x1 - xO)

for int x = x0 to x1
float y = y@ + m(x - xO)
setPixel (x, round(y))

Computer Graphics 2019/20 - Line Rasterization

15

Line Drawing

e Simple algorithm, incremental version

 Remark:
Yn = Yo + m(x, — Xo)
VYn+1 = Yo +mxy +1—x0) =y, + m
float m = (float)(yl - y@)/(x1 - x0)
float y = yo
int x = x0

while (x <= x1)
setPixel(x, round(y))
X =Xx+1
y=y+nm

Computer Graphics 2019/20 - Line Rasterization

16

Line Drawing: Bresenham

* Bresenham-Algorithm based on
incremental version (see right)

* goal
* avoid float-operations
e use integer only

cif0<m<1andxy < xq:
* y remains either the same
* orisincreased by one

// incremental line drawing

float m = (float)(yl - y@)/(x1 - x0)
float y = yo
int x = x0

while (x <= x1)
setPixel(x, round(y))

X =X+ 1

* Two cases:
Case 1: Case 2:
o—0
East North-East

* How to decide between E and NE ?

y=y+nm
// Bresenham line drawing
int y = yo
int x = x0

while (x <= x1)
setPixel(x,y)
X=x+1
if (some condition)

y=y +1

Line Drawing: Bresenham

* The implicit equation for a line
F(x,y) = (y = ¥0) —m(x — xo)

* F(x,y) = 0: (x,y) ison the line
* F(x,y) < 0: (x,y) is below the line
* F(x,y) > 0: (x,y) is above the line

Line Drawing: Bresenham

* Midpoint decider S Pl

— look at midpoint between E and NE pixel 2;

* if line below midpoint GO EAST /

(x+1,y+0.5)
therwise, GO NORTH-EAST current NE
¢ otherwise, -
(x, y) //

P

T

* That is: // Bresenham line drawing
int y = yo
int x = x0

while (x <= x1)
setPixel(x,y)
X =X+1
if (F(x,y+0.5) < 0)
y=y+1

Line Drawing: Bresenham

* Performance considerations:
Making the evaluation of the decider faster

* |ncremental
* Integer operation only

e But F is rational value (m is rational)...

* But we can multiply F with arbitrary positive value
— get rid of denominator of m

* F(x,y) = y(xy —x0) + x(¥yg — y1) + Y1X0 — YoX1 =
Ax(y —yo) — Ay(x — xp)

Line Drawing: Bresenham

* Incremental algorithm: Compute F incrementally in variable d
— First step in loop

d=F(xo+1,y0+1/,)

* Within loop, ifd < 0
- NE: (xg,¥0) = (xo + 1,y9 + 1)
* Next test will be at (xg + 2,y, + 1 + 1/,)

. F(xo + 2, v, +%) = ..=F(xg+1,y,+ 1)+ Ax — Ay
* = Incremental update of d: Apew = do1g + Ax — Ay

* Analog, ifd > 0
= E: (X0, ¥0) = (%0 + 1,¥0)
* Next test will be at (xo + 2,y + %)

cF(xo+2y0+5)==F(xo+Ly+3)+ ¥ —»)

* Incremental update of d: Apew = do1g — Ay

Line Drawing: Bresenham

e Algorithm

int y = yo
int x
float d = F(x0+1,y0+0.5) // decider
for x = x0 to x = x1
draw_pixel(x,y)
if (d < 9) then // go NE

y=y+1
d=d+ (x1 - x0) + (yo - yl1)
else // go E

d=d+ (yo - yl)

Computer Graphics 2019/20 - Line Rasterization

22

Line Drawing: Bresenham

* Initialization of D has a 0.5-parameter - initial value multiple of 0.5
 All other increments are integer

* > multiple with 2 = integer only

int x = x0
int y = yo
int Ax = x1 - x0
int Ay = y1 - y@

int D = Ax - 20y , ADE = -20y , ADNE = 2(Ax - Ay)

while (x <= x1)
draw_pixel(x,y)

X=X+ 1
if(D < 0) {
y=y+1
D = D + ADNE
}
else
D =D + ADE

Line Drawing: Bresenham

* handling multiple slopes: consider eight regions: octants

\\\ //
N Yo < V1 Yo < V1 o
o —o<m<-—-1|1<m<oo
\\ //

\\ //

\\\ //

\\\ //
x1 <x0 N /’/ xO <X1
-1<sm<0 e T TS 0<m<1
RN , \

1 \\ // \

1 \"
1 2T
v N 1
\ ’ AN .
-, \N 7
Y. >
x1 < xo /// ETE B \\ xO < xl
0<m<1 . -1€sm<0
/// \\\
// \\\
// \\
o Y1 <Yo Y1 <Yo N
e l1<m< o —o<m< -1 -
/// \\\

Computer Graphics 2019/20 - Line Rasterization 24

Line Drawing: Bresenham

* Remark: negative slopes

* update on y is different
* if line above midpoint update to (x + 1,y)
» otherwise updateto (x + 1,y — 1)

e update on decision variable is subtly different:
F(x +1,y +%) > 0 = goto (x + 1,y — 1) and next test at (x + 2,y —2)

F(x+1,y+%) < 0 = goto (x + 1, y) and next test at (x+2,y—%)

Line Drawing: Bresenham

* One possible strategy
* if xo > xq1: swap start and end points

* If [m| > 1: swap coordinates, i.e. x &y
*ifm < 0O:setstepinytobe—1
* use Ax = x;-xy,and Ay = |y, - y,|

Line Drawing

* Problems:
* The length of a line is measured in screen units = pixels

Ideally: number of pixels of scan-converted line equal length

If line longer than no. of pixels, it looks fragmented

Bresenham algorithm generates number of pixels = max(Ax, Ay)

Assume |m| < 1
number of pixels = L cos
where L length of line

Ax

Line Drawing: Anti-Aliasing

* Problems

* Line intensity varies with slope

Horizontal line: Diagonal line:
1 pixel / unit length 1/~/2 pixel / unit length

— on grey scale screen: modify intensity by T cosa

Line Drawing: Anti-Aliasing

» “Jaggies” = typical aliasing artifact

* In the original Bresenham, only one pixel is
drawn per incremental step. The desired

intensity (here: black) is entirely assigned to

that pixel.

e Can also result in patterns

— Moire effect (Wikipedia)

(]|

Computer Graphics 2019/20 - Line Rasterization

https://de.wikipedia.org/wiki/Moir%C3%A9-Effekt

Line Drawing: Anti-Aliasing

e Antialiased Bresenham

* With antialiasing, (up to) two pixels are drawn per incremental step (and column).
The intensity of these pixels sums up to the desired intensity.

Computer Graphics 2019/20 - Line Rasterization

30

Line Drawing: Anti-Aliasing

* In order to decide which pixels we should draw and how to choose the
weighting factors, we need the signed distance a between the true line and
the midpoint between the E- and the NE-pixel.

r

The distance can be computed
I a from the decision variable d:
B d
/ T oAx

Line Drawing: Anti-Aliasing

* Which pixels should be drawn?
« Cased = 0 (choose E)

/ ////

a < 0.5 a > 05
draw pixels: draw pixels:
(x 4+ 1, y) with intensity factor 1 — |a + 0.5] (x + 1, y) with intensity factor 1 — |a + 0.5
(x + 1,y + 1) with intensity factor |a + 0.5| (x + 1,y — 1) with intensity factor |a + 0.5|

Computer Graphics 2019/20 - Line Rasterization 32

Line Drawing: Anti-Aliasing

* Case d < 0 (choose NE)

1] i

a > —0.5 a < —05
draw pixels: draw pixels:
(x +1,y + 1) with intensity 1 — |a — 0.5 (x +1,y + 1) with intensity 1 — |a — 0.5]|
(x + 1, y) with intensity |a — 0.5] (x + 1,y + 2) with intensity |a — 0.5]

Computer Graphics 2019/20 - Line Rasterization 33

Further Reading - Circle Drawing

* Circle
* Centerc = (x,,Y,)
* Circle of radius r
(x—x)+ (Y —y)? = r?
* For now:
* Center at (0,0)

 Eight-fold symmetry

 1st octant: 0<y<x

* 2nd octant: 0<=x<y

* 3rd octant: 0<=—x<y

* 4th octant: 0<=y<—x

* 5th octant: 0<=—-y<—x
* 6th octant: 0<=—x<-y
e 7th octant: O0<=x<-—y

8th octant: 0<=—-y<x

Further Reading - Circle Drawing

* Draw pixels using the 8-fold symmetry
add offset ¢ = (x,,y.) to center circle at (x., y.)

// The pixel (x,y) is in the 2nd octant

void draw8pixel(xc,yc,Xx,y)

{
draw_pixel(xc+x,yc+y); // (x,y) 2nd octant
draw_pixel(xc+y,yc+x); // 1st octant
draw_pixel(xc-x,yc+y); // 3rd octant
draw_pixel(xc-y,yc+x); // 4th octant

Further Reading - Circle Drawing

*The2ndoctantt m< 0; Im|<1; 0< x < y
* The implicit function
Flx,y) = (x —x)° + (y —yo)? —r?
* The circle
{x € R?:F(x,y) = 0}

° Properties 2nd octant
* F(x,y) > 0 - (x,y) is outside/above the circle

« F(x,y) < 0 — (x,y) isinside/below the circle F(x,y)>0

F(x,y) <0

Further Reading - Circle Drawing

* The decider variable
ed = F(x+1,y—1/2)
* The increment

*d > 0((x,y) outside the circle)

*(xy) > (x+1Ly—-1)
*d < 0((x,y) inside the circle)
* (xy) » (x+1y)

Further Reading - Circle Drawing

* The increment of the decider variable
*Setd = F(x+1,y—1/2)
* Cased < O;nexttestat(x+2,y—1/2)
cF(x+2y-2)-F(x+1y—-3)=-=2x+3

*=>d=d+ 2x + 3
3
* Cased > 0; next test at (x+2,y—z)

s F(x+2y-2)-F(x+1y—-3)=-=2(x-y)+5
e=>d=d+ 2x-y) +5

Further Reading - Circle Drawing

* The increment of the decider variable
* The increment of d depends on the position (x, y)
* Introduce new variables E and SE (E: east, SE: south east)
E =2x+3;,SE = 2(x-y)+ 5
 E and SE can be computed incrementally
— incrementally compute the increment
e Ifd < 0:d =d+ E,E=F+ 2, SE = SE + 2
e Ifd >0:d =d+ SE; E =FE + 2, SE = SE + 4

Further Reading - Circle Drawing

* Remarks
*Used = F(x+1,y-%)- %
* Use only integer precision, x,y and r are taken to be ints

Further Reading - Circle Drawing

// Bresenham. 77
void Bresenham_Circle(xc,yc,r)
{
X=0;y=r;
d=1-r; e =3; se =5 - 2%p;
do {
draw8pixel(xc,yc,Xx,y);
if d < 0 then
d=d+ e;
e =e + 2;
se = se + 2;
X =X + 1;

else
d =d + se;
e =e + 2;
se = se + 4;
X =X + 1;
y=y-1;

} while (x <= vy)

Computer Graphics 2019/20 - Line Rasterization

41

Next Lecture

* Polygon Rasterization

	Lecture #03��Line Rasterization�
	What is Rasterization ?
	Rasterization - Primitives
	Rasterization - Primitives
	Rasterization
	Line Drawing
	Line Drawing
	Line Drawing
	Line Drawing
	Line Drawing
	Line Drawing
	Line Drawing
	Line Drawing
	Line Drawing
	Line Drawing
	Line Drawing
	Line Drawing: Bresenham
	Line Drawing: Bresenham
	Line Drawing: Bresenham
	Line Drawing: Bresenham
	Line Drawing: Bresenham
	Line Drawing: Bresenham
	Line Drawing: Bresenham
	Line Drawing: Bresenham
	Line Drawing: Bresenham
	Line Drawing: Bresenham
	Line Drawing
	Line Drawing: Anti-Aliasing
	Line Drawing: Anti-Aliasing
	Line Drawing: Anti-Aliasing
	Line Drawing: Anti-Aliasing
	Line Drawing: Anti-Aliasing
	Line Drawing: Anti-Aliasing
	Further Reading - Circle Drawing
	Further Reading - Circle Drawing
	Further Reading - Circle Drawing
	Further Reading - Circle Drawing
	Further Reading - Circle Drawing
	Further Reading - Circle Drawing
	Further Reading - Circle Drawing
	Further Reading - Circle Drawing
	Next Lecture

