
Lecture #03

Line Rasterization

Computer Graphics
Winter Term 2020/21

Marc Stamminger / Roberto Grosso

• Given a primitive, find the pixels that cover this primitive

• Triangle primitive:

• Line primitive:

2

What is Rasterization ?

Computer Graphics 2019/20 - Line Rasterization

Rasterization - Primitives

• Which primitives are of interest ?

• Lines:
• very widely used in CAD (computer aided design) → wireframe models

• every curve can be approximated by lines

au
to

de
sk

.c
om

Computer Graphics 2019/20 - Line Rasterization 3

Rasterization - Primitives

• mostly, we want to fill objects → polygons
• A polygon is defined by an ordered set of

points (for now in 2D)

• Every shape can be approximated by a polygon

• Every polygon can be split into triangles
= Triangulation

au
to

de
sk

.c
om

au
to

de
sk

.c
om

𝑝𝑝1
𝑝𝑝2

𝑝𝑝3
𝑝𝑝4

𝑝𝑝5

𝑝𝑝1
𝑝𝑝2

𝑝𝑝3
𝑝𝑝4

𝑝𝑝5

Computer Graphics 2019/20 - Line Rasterization 4

Rasterization

• This lecture: Rasterization of lines (+ circles)
• Next Lecture: Rasterization of filled objects (Triangles, Polygons)

Computer Graphics 2019/20 - Line Rasterization 5

• Line Rasterization
• Given: Segment endpoints (integers (𝑥𝑥0, 𝑦𝑦0), (𝑥𝑥1,𝑦𝑦1))
• Identify: Set of pixels (𝑥𝑥,𝑦𝑦) that represent the line segment

6

Line Drawing

(𝑥𝑥0,𝑦𝑦0)

(𝑥𝑥1, 𝑦𝑦1)

Computer Graphics 2019/20 - Line Rasterization

Line Drawing

• An iterative version

•

• renders x1-x0 pixels for all lines → but length varies by 2
Computer Graphics 2019/20 - Line Rasterization 7

Line Drawing

• Doesn‘t work if slope > 1
• and for x0 > x1, …

• → differentiate cases

Computer Graphics 2019/20 - Line Rasterization 8

Line Drawing

• Incremental version – even simpler

•

• only one addition within loop
Computer Graphics 2019/20 - Line Rasterization 9

Line Drawing

• A recursive line rasterizer

•

• → for our purpose: slow, pixels may be set multiple times…
Computer Graphics 2019/20 - Line Rasterization 10

• Line Rasterization: Problem statement (without anti-aliasing)

11

Line Drawing

Computer Graphics 2019/20 - Line Rasterization

Mark all pixels touched
by the line. Line appears

to be thicker

blue pixels
should not be

considered

Better (thinnest)
approximation

of the line

• Problem Statement
• How to draw a line from 𝑃𝑃0 = (𝑥𝑥0,𝑦𝑦0) to 𝑃𝑃1 = (𝑥𝑥1,𝑦𝑦1)
• Examples

• (0,0) to (6,6) Slope = 6/6

• (0,0) to (8,4) Slope = 4/8

12

Line Drawing

Computer Graphics 2019/20 - Line Rasterization

• Simplification
• Slope m: 0 < 𝑚𝑚 < 1 where 𝑚𝑚 = Δ𝑦𝑦/Δ𝑥𝑥 = (𝑦𝑦1 − 𝑦𝑦0)/(𝑥𝑥1 − 𝑥𝑥0)
• 𝑥𝑥0 < 𝑥𝑥 < 𝑥𝑥1: 𝑦𝑦 = 𝑦𝑦0 + 𝑚𝑚(𝑥𝑥 – 𝑥𝑥0)
• all other cases can be treated similarly

13

Line Drawing

Computer Graphics 2019/20 - Line Rasterization

• Slope m: 0 < m < 1 where 𝑚𝑚 = Δ𝑦𝑦
Δ𝑥𝑥

= 𝑦𝑦1−𝑦𝑦0
𝑥𝑥1−𝑥𝑥0

14

Line Drawing

(𝑥𝑥0, 𝑦𝑦0)

(𝑥𝑥1, 𝑦𝑦1)

Computer Graphics 2019/20 - Line Rasterization

Line Drawing

• Brute force algorithm
• 𝑥𝑥0, 𝑥𝑥1,𝑦𝑦0,𝑦𝑦1 are integers
• Direct version

15

float m = (float)(y1 – y0) / (x1 – x0)

for int x = x0 to x1
float y = y0 + m(x – x0)
setPixel (x, round(y))

Computer Graphics 2019/20 - Line Rasterization

• Simple algorithm, incremental version
• Remark:

𝑦𝑦𝑛𝑛 = 𝑦𝑦0 + 𝑚𝑚 𝑥𝑥𝑛𝑛 − 𝑥𝑥0
𝑦𝑦𝑛𝑛+1 = 𝑦𝑦0 + 𝑚𝑚 𝑥𝑥𝑛𝑛 + 1 − 𝑥𝑥0 = 𝑦𝑦𝑛𝑛 + 𝑚𝑚

16

Line Drawing

float m = (float)(y1 – y0)/(x1 – x0)
float y = y0
int x = x0

while (x <= x1)
setPixel(x, round(y))
x = x + 1
y = y + m

Computer Graphics 2019/20 - Line Rasterization

• Bresenham-Algorithm based on
incremental version (see right)

• goal
• avoid float-operations
• use integer only

• if 0 < 𝑚𝑚 < 1 and 𝑥𝑥0 < 𝑥𝑥1:
• y remains either the same
• or is increased by one

• Two cases:

• How to decide between E and NE ?
17

Line Drawing: Bresenham

East

Case 1:

North-East

Case 2:

// incremental line drawing
float m = (float)(y1 – y0)/(x1 – x0)
float y = y0
int x = x0

while (x <= x1)
setPixel(x, round(y))
x = x + 1
y = y + m

// Bresenham line drawing
int y = y0
int x = x0

while (x <= x1)
setPixel(x,y)
x = x + 1
if (some condition)

y = y + 1

Computer Graphics 2019/20 - Line Rasterization

• The implicit equation for a line
𝐹𝐹 𝑥𝑥,𝑦𝑦 = 𝑦𝑦 − 𝑦𝑦0 − 𝑚𝑚(𝑥𝑥 − 𝑥𝑥0)

• 𝐹𝐹(𝑥𝑥,𝑦𝑦) = 0: (𝑥𝑥,𝑦𝑦) is on the line
• 𝐹𝐹 𝑥𝑥,𝑦𝑦 < 0: (𝑥𝑥,𝑦𝑦) is below the line

• 𝐹𝐹 𝑥𝑥,𝑦𝑦 > 0: (𝑥𝑥,𝑦𝑦) is above the line

18

Line Drawing: Bresenham

𝐹𝐹 𝑥𝑥, 𝑦𝑦 > 0

𝐹𝐹 𝑥𝑥, 𝑦𝑦 < 0

Computer Graphics 2019/20 - Line Rasterization

Line Drawing: Bresenham

• Midpoint decider
→ look at midpoint between E and NE pixel

• if line below midpoint GO EAST

• otherwise, GO NORTH-EAST

• That is:

19

current
(𝑥𝑥, 𝑦𝑦)

// Bresenham line drawing
int y = y0
int x = x0

while (x <= x1)
setPixel(x,y)
x = x + 1
if (F(x,y+0.5) < 0)

y = y + 1

E

NE

E

NE
(𝑥𝑥 + 1,𝑦𝑦 + 0.5)

Computer Graphics 2019/20 - Line Rasterization

• Performance considerations:
Making the evaluation of the decider faster

• Incremental
• Integer operation only

• But 𝐹𝐹 is rational value (𝑚𝑚 is rational)…

• But we can multiply 𝐹𝐹 with arbitrary positive value
→ get rid of denominator of 𝑚𝑚

• 𝐹𝐹 𝑥𝑥,𝑦𝑦 = 𝑦𝑦 𝑥𝑥1 − 𝑥𝑥0 + 𝑥𝑥 𝑦𝑦0 − 𝑦𝑦1 + 𝑦𝑦1𝑥𝑥0 − 𝑦𝑦0𝑥𝑥1 =
Δ𝑥𝑥 𝑦𝑦 − 𝑦𝑦0 − Δ𝑦𝑦(𝑥𝑥 − 𝑥𝑥0)

20

Line Drawing: Bresenham

Computer Graphics 2019/20 - Line Rasterization

Line Drawing: Bresenham

• Incremental algorithm: Compute 𝐹𝐹 incrementally in variable 𝑑𝑑
→ First step in loop

𝑑𝑑 = 𝐹𝐹(𝑥𝑥0 + 1,𝑦𝑦𝑦 + �1
2)

• Within loop, if 𝑑𝑑 < 0
→ NE: 𝑥𝑥0,𝑦𝑦0 → (𝑥𝑥0 + 1,𝑦𝑦0 + 1)

• Next test will be at 𝑥𝑥0 + 2, 𝑦𝑦0 + 1 + ⁄1 2

• 𝐹𝐹 𝑥𝑥0 + 2,𝑦𝑦0 + 3
2

= … = 𝐹𝐹 𝑥𝑥0 + 1,𝑦𝑦0 + ⁄1 2 + Δ𝑥𝑥 − Δ𝑦𝑦
• → Incremental update of d: 𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 + Δ𝑥𝑥 − Δ𝑦𝑦

• Analog, if 𝑑𝑑 > 0
→ E: 𝑥𝑥0,𝑦𝑦0 → (𝑥𝑥0 + 1,𝑦𝑦0)

• Next test will be at 𝑥𝑥0 + 2,𝑦𝑦0 + 1
2

• 𝐹𝐹 𝑥𝑥0 + 2,𝑦𝑦0 + 1
2

= ⋯ = 𝐹𝐹 𝑥𝑥0 + 1,𝑦𝑦 + 1
2

+ (𝑦𝑦0 − 𝑦𝑦1)

• Incremental update of d: 𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 − Δ𝑦𝑦
21Computer Graphics 2019/20 - Line Rasterization

• Algorithm

22

Line Drawing: Bresenham

int y = y0
int x
float d = F(x0+1,y0+0.5) // decider
for x = x0 to x = x1

draw_pixel(x,y)
if (d < 0) then // go NE

y = y + 1
d = d + (x1 – x0) + (y0 – y1)

else // go E
d = d + (y0 – y1)

Computer Graphics 2019/20 - Line Rasterization

• Initialization of 𝐷𝐷 has a 0.5-parameter → initial value multiple of 0.5
• All other increments are integer

• → multiple with 2 → integer only

23

Line Drawing: Bresenham

int x = x0
int y = y0
int Δx = x1 – x0
int Δy = y1 – y0
int D = Δx – 2Δy , ΔDE = -2Δy , ΔDNE = 2(Δx - Δy)

while (x <= x1)
draw_pixel(x,y)
x = x + 1
if(D < 0) {

y = y + 1
D = D + ΔDNE

}
else

D = D + ΔDE

Computer Graphics 2019/20 - Line Rasterization

Line Drawing: Bresenham

• handling multiple slopes: consider eight regions: octants

24

𝑦𝑦0 < 𝑦𝑦1
−∞ < 𝑚𝑚 < −1

𝑦𝑦0 < 𝑦𝑦1
1 < 𝑚𝑚 < ∞

𝑦𝑦1 < 𝑦𝑦0
−∞ < 𝑚𝑚 < −1

𝑦𝑦1 < 𝑦𝑦0
1 < 𝑚𝑚 < ∞

𝑥𝑥1 < 𝑥𝑥0
-1 ≤ 𝑚𝑚 ≤ 0

𝑥𝑥0 < 𝑥𝑥1
-1 ≤ 𝑚𝑚 ≤ 0

𝑥𝑥0 < 𝑥𝑥1
0 ≤ 𝑚𝑚 ≤ 1

𝑥𝑥1 < 𝑥𝑥0
0 ≤ 𝑚𝑚 ≤ 1

Computer Graphics 2019/20 - Line Rasterization

Line Drawing: Bresenham

• Remark: negative slopes
• update on 𝑦𝑦 is different

• if line above midpoint update to (𝑥𝑥 + 1, 𝑦𝑦)
• otherwise update to (𝑥𝑥 + 1,𝑦𝑦 − 1)

• update on decision variable is subtly different:
𝐹𝐹 𝑥𝑥 + 1,𝑦𝑦 + 1

2
> 0 ⇒ goto (𝑥𝑥 + 1,𝑦𝑦 − 1) and next test at 𝑥𝑥 + 2,𝑦𝑦 − 3

2

𝐹𝐹 𝑥𝑥 + 1,𝑦𝑦 + 1
2
≤ 0 ⇒ goto 𝑥𝑥 + 1, 𝑦𝑦 and next test at (𝑥𝑥 + 2,𝑦𝑦 − 1

2
)

25Computer Graphics 2019/20 - Line Rasterization

• One possible strategy
• if 𝑥𝑥0 > 𝑥𝑥1: swap start and end points

• If 𝑚𝑚 > 1: swap coordinates, i.e. 𝑥𝑥↔𝑦𝑦
• if 𝑚𝑚 < 0: set step in 𝑦𝑦 to be −1
• use Δ𝑥𝑥 = 𝑥𝑥1 – 𝑥𝑥0 and Δ𝑦𝑦 = |𝑦𝑦1 – 𝑦𝑦0|

26

Line Drawing: Bresenham

Computer Graphics 2019/20 - Line Rasterization

• Problems:
• The length of a line is measured in screen units = pixels
• Ideally: number of pixels of scan-converted line equal length
• If line longer than no. of pixels, it looks fragmented
• Bresenham algorithm generates number of pixels = max(Δ𝑥𝑥,∆𝑦𝑦)
• Assume 𝑚𝑚 < 1

number of pixels = 𝐿𝐿 cos𝛼𝛼
where 𝐿𝐿 length of line

27

Line Drawing

𝐿𝐿
Δ𝑦𝑦

𝛼𝛼

Δx

Computer Graphics 2019/20 - Line Rasterization

• Problems
• Line intensity varies with slope

→ on grey scale screen: modify intensity by 1
2 cos 𝛼𝛼

28

Line Drawing: Anti-Aliasing

Diagonal line:
1/ 2 pixel / unit length

Horizontal line:
1 pixel / unit length

Computer Graphics 2019/20 - Line Rasterization

• “Jaggies” → typical aliasing artifact
• In the original Bresenham, only one pixel is

drawn per incremental step. The desired
intensity (here: black) is entirely assigned to
that pixel.

• Can also result in patterns
→ Moire effect (Wikipedia)

29

Line Drawing: Anti-Aliasing

Computer Graphics 2019/20 - Line Rasterization

https://de.wikipedia.org/wiki/Moir%C3%A9-Effekt

• Antialiased Bresenham
• With antialiasing, (up to) two pixels are drawn per incremental step (and column).

The intensity of these pixels sums up to the desired intensity.

30

Line Drawing: Anti-Aliasing

Computer Graphics 2019/20 - Line Rasterization

Line Drawing: Anti-Aliasing

• In order to decide which pixels we should draw and how to choose the
weighting factors, we need the signed distance 𝑎𝑎 between the true line and
the midpoint between the E- and the NE-pixel.

31

𝑎𝑎
The distance can be computed
from the decision variable 𝑑𝑑:

𝑎𝑎 =
𝑑𝑑

2Δ𝑥𝑥

Computer Graphics 2019/20 - Line Rasterization

• Which pixels should be drawn?

• Case 𝑑𝑑 ≥ 0 (choose E)

32

Line Drawing: Anti-Aliasing

𝑎𝑎 < 0.5
draw pixels:
(𝑥𝑥 + 1, 𝑦𝑦) with intensity factor 1 − |𝑎𝑎 + 0.5|
(𝑥𝑥 + 1, 𝑦𝑦 + 1) with intensity factor |𝑎𝑎 + 0.5|

𝑎𝑎 > 0.5
draw pixels:
(𝑥𝑥 + 1, 𝑦𝑦) with intensity factor 1 − |𝑎𝑎 + 0.5|
(𝑥𝑥 + 1, 𝑦𝑦 − 1) with intensity factor |𝑎𝑎 + 0.5|

Computer Graphics 2019/20 - Line Rasterization

• Case d < 0 (choose NE)

33

Line Drawing: Anti-Aliasing

𝑎𝑎 > −0.5
draw pixels:
(𝑥𝑥 + 1,𝑦𝑦 + 1) with intensity 1 − |𝑎𝑎 − 0.5|
(𝑥𝑥 + 1,𝑦𝑦) with intensity |𝑎𝑎 − 0.5|

𝑎𝑎 < −0.5
draw pixels:
(𝑥𝑥 + 1,𝑦𝑦 + 1) with intensity 1 − |𝑎𝑎 − 0.5|
(𝑥𝑥 + 1,𝑦𝑦 + 2) with intensity |𝑎𝑎 − 0.5|

Computer Graphics 2019/20 - Line Rasterization

• Circle
• Center 𝑐𝑐 = (𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐)
• Circle of radius 𝑟𝑟

𝑥𝑥 − 𝑥𝑥𝑐𝑐 2 + 𝑦𝑦 − 𝑦𝑦𝑐𝑐 2 = 𝑟𝑟2

• For now:
• Center at (0,0)

• Eight-fold symmetry
• 1st octant: 0 ≤ 𝑦𝑦 < 𝑥𝑥
• 2nd octant: 0 <= 𝑥𝑥 < 𝑦𝑦
• 3rd octant: 0 <= −𝑥𝑥 < 𝑦𝑦
• 4th octant: 0 <= 𝑦𝑦 < −𝑥𝑥
• 5th octant: 0 <= −𝑦𝑦 < −𝑥𝑥
• 6th octant: 0 <= −𝑥𝑥 < −𝑦𝑦
• 7th octant: 0 <= 𝑥𝑥 < −𝑦𝑦
• 8th octant: 0 <= −𝑦𝑦 < 𝑥𝑥

34

Further Reading - Circle Drawing

Computer Graphics 2019/20 - Line Rasterization

• Draw pixels using the 8-fold symmetry
add offset 𝑐𝑐 = (𝑥𝑥𝑐𝑐 ,𝑦𝑦𝑐𝑐) to center circle at (𝑥𝑥𝑐𝑐 ,𝑦𝑦𝑐𝑐)

35

Further Reading - Circle Drawing

// The pixel (x,y) is in the 2nd octant
void draw8pixel(xc,yc,x,y)
{

draw_pixel(xc+x,yc+y); // (x,y) 2nd octant
draw_pixel(xc+y,yc+x); // 1st octant
draw_pixel(xc-x,yc+y); // 3rd octant
draw_pixel(xc-y,yc+x); // 4th octant
...

}

Computer Graphics 2019/20 - Line Rasterization

Further Reading - Circle Drawing

• The 2nd octant: 𝑚𝑚 < 0; 𝑚𝑚 < 1; 0 < 𝑥𝑥 < 𝑦𝑦
• The implicit function

𝐹𝐹 𝑥𝑥,𝑦𝑦 = 𝑥𝑥 − 𝑥𝑥𝑐𝑐 2 + 𝑦𝑦 − 𝑦𝑦𝑐𝑐 2 − 𝑟𝑟2

• The circle
𝑥𝑥 ∈ ℝ2:𝐹𝐹 𝑥𝑥,𝑦𝑦 = 0

• Properties
• 𝐹𝐹 𝑥𝑥,𝑦𝑦 > 0 → (𝑥𝑥, 𝑦𝑦) is outside/above the circle
• 𝐹𝐹 𝑥𝑥,𝑦𝑦 ≤ 0 → (𝑥𝑥,𝑦𝑦) is inside/below the circle

36

2nd octant

𝐹𝐹(𝑥𝑥,𝑦𝑦) < 0

𝐹𝐹 𝑥𝑥, 𝑦𝑦 > 0

Computer Graphics 2019/20 - Line Rasterization

• The decider variable
• 𝑑𝑑 = 𝐹𝐹(𝑥𝑥 + 1,𝑦𝑦 − 1/2)

• The increment
• 𝑑𝑑 > 0 ((𝑥𝑥,𝑦𝑦) outside the circle)

• (𝑥𝑥, 𝑦𝑦) → (𝑥𝑥 + 1,𝑦𝑦 − 1)
• 𝑑𝑑 < 0 ((𝑥𝑥,𝑦𝑦) inside the circle)

• (𝑥𝑥, 𝑦𝑦) → (𝑥𝑥 + 1,𝑦𝑦)

37

Further Reading - Circle Drawing

Computer Graphics 2019/20 - Line Rasterization

• The increment of the decider variable
• Set 𝑑𝑑 = 𝐹𝐹(𝑥𝑥 + 1,𝑦𝑦 − 1/2)
• Case 𝑑𝑑 < 0; next test at (𝑥𝑥 + 2,𝑦𝑦 − 1/2)

• 𝐹𝐹 𝑥𝑥 + 2, 𝑦𝑦 − 1
2
− 𝐹𝐹 𝑥𝑥 + 1,𝑦𝑦 − 1

2
= ⋯ = 2𝑥𝑥 + 3

• ⇒ 𝑑𝑑 = 𝑑𝑑 + 2𝑥𝑥 + 3

• Case 𝑑𝑑 > 0; next test at 𝑥𝑥 + 2,𝑦𝑦 − 3
2

• 𝐹𝐹 𝑥𝑥 + 2, 𝑦𝑦 − 3
2
− 𝐹𝐹 𝑥𝑥 + 1,𝑦𝑦 − 1

2
= ⋯ = 2 𝑥𝑥 − 𝑦𝑦 + 5

• ⇒ 𝑑𝑑 = 𝑑𝑑 + 2(𝑥𝑥 – 𝑦𝑦) + 5

38

Further Reading - Circle Drawing

Computer Graphics 2019/20 - Line Rasterization

• The increment of the decider variable
• The increment of d depends on the position (𝑥𝑥,𝑦𝑦)
• Introduce new variables 𝐸𝐸 and 𝑆𝑆𝐸𝐸 (E: east, SE: south east)

𝐸𝐸 = 2𝑥𝑥 + 3; 𝑆𝑆𝐸𝐸 = 2 𝑥𝑥 – 𝑦𝑦 + 5
• 𝐸𝐸 and 𝑆𝑆𝐸𝐸 can be computed incrementally
→ incrementally compute the increment

• If 𝑑𝑑 < 0: 𝑑𝑑 = 𝑑𝑑 + 𝐸𝐸; 𝐸𝐸 = 𝐸𝐸 + 2; 𝑆𝑆𝐸𝐸 = 𝑆𝑆𝐸𝐸 + 2
• If 𝑑𝑑 > 0: 𝑑𝑑 = 𝑑𝑑 + 𝑆𝑆𝐸𝐸; 𝐸𝐸 = 𝐸𝐸 + 2; 𝑆𝑆𝐸𝐸 = 𝑆𝑆𝐸𝐸 + 4

39

Further Reading - Circle Drawing

Computer Graphics 2019/20 - Line Rasterization

• Remarks
• Use 𝑑𝑑 = 𝐹𝐹(𝑥𝑥 + 1,𝑦𝑦 – ½) – ¼
• Use only integer precision, 𝑥𝑥, 𝑦𝑦 and 𝑟𝑟 are taken to be ints

40

Further Reading - Circle Drawing

Computer Graphics 2019/20 - Line Rasterization

41

Further Reading - Circle Drawing

// Bresenham. 77
void Bresenham_Circle(xc,yc,r)
{

x = 0; y = r;
d = 1 – r; e = 3; se = 5 – 2*r;
do {

draw8pixel(xc,yc,x,y);
if d < 0 then

d = d + e;
e = e + 2;
se = se + 2;
x = x + 1;

else
d = d + se;
e = e + 2;
se = se + 4;
x = x + 1;
y = y - 1;

} while (x <= y)
}

Computer Graphics 2019/20 - Line Rasterization

Next Lecture

• Polygon Rasterization

Computer Graphics 2019/20 - Line Rasterization 42

	Lecture #03��Line Rasterization�
	What is Rasterization ?
	Rasterization - Primitives
	Rasterization - Primitives
	Rasterization
	Line Drawing
	Line Drawing
	Line Drawing
	Line Drawing
	Line Drawing
	Line Drawing
	Line Drawing
	Line Drawing
	Line Drawing
	Line Drawing
	Line Drawing
	Line Drawing: Bresenham
	Line Drawing: Bresenham
	Line Drawing: Bresenham
	Line Drawing: Bresenham
	Line Drawing: Bresenham
	Line Drawing: Bresenham
	Line Drawing: Bresenham
	Line Drawing: Bresenham
	Line Drawing: Bresenham
	Line Drawing: Bresenham
	Line Drawing
	Line Drawing: Anti-Aliasing
	Line Drawing: Anti-Aliasing
	Line Drawing: Anti-Aliasing
	Line Drawing: Anti-Aliasing
	Line Drawing: Anti-Aliasing
	Line Drawing: Anti-Aliasing
	Further Reading - Circle Drawing
	Further Reading - Circle Drawing
	Further Reading - Circle Drawing
	Further Reading - Circle Drawing
	Further Reading - Circle Drawing
	Further Reading - Circle Drawing
	Further Reading - Circle Drawing
	Further Reading - Circle Drawing
	Next Lecture

