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Rendering
• “Rendering”:

• fill frame buffer with shapes, text, 3D-content, …

• Examples:
• render a rectangle → simple
• render a circle with radius 𝑟𝑟 and center (𝑥𝑥,𝑦𝑦) → ???
• render a line from 𝑥𝑥1,𝑦𝑦1 to (𝑥𝑥2,𝑦𝑦2) → ???
• fill a triangle with vertices 𝑥𝑥1,𝑦𝑦1 , 𝑥𝑥2,𝑦𝑦2 , 𝑥𝑥3,𝑦𝑦3 → ???
• → next week “Rasterization”
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Rendering
• Frame buffer is usually not written directly, but via a Graphics API

• Today we will have a brief look into such APIs, but this is not the 
general topic of this lecture

• Mostly, we learn about the algorithms for rendering
• In the exercises, we will also look at the graphics APIs
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Rendering
• Command-based APIs:

• a library containing functions that render primitives, such as lines, 
rectangles, circles or similar

• oftentimes, this includes the interaction with the GPU (a special device on 
the computer that is solely responsible for rendering)

• Scenegraph-based APIs:
• the scene to be rendered is defined in an abstract manner in a hierarchical 

(tree-like) structure, which is passed to the renderer as a whole
• In HTML, this can be integrated into the normal document hierarchy

(see later)

• 3D:
• the primitives to be rendered are defined in 3D-space. A virtual camera is to 

be specified that defines the mapping of the 3D-world to the 2D image. Also 
occlusion must be considered.
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Rendering APIs

2D 3D

command based • JAVA graphics 2D
• HTML canvas
• Postscript
• …

• OpenGL
• DirectX
• …

scenegraph based • SVG
• …

• X3D
• Unreal
• Unity
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Today: 2D Graphics APIs
• We look into graphics APIs provided by HTML
• HTML-elements that can be filled with 2D graphics:

• Canvas Element: Command-based API

• SVG Element: Scenegraph-based API
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HTML
• To use these, we must know very basic HTML

Computer Graphics 2020/21 - 2D Graphics 7

Vorführender
Präsentationsnotizen
LiveSlide
https://lehre.lgdv.tf.fau.de/CG/Demos/HTML.html



HTML5 Canvas
• We start with canvas. For more information see:
https://developer.mozilla.org/de/docs/Web/Guide/HTML/Canvas_Tutorial
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2D Graphics - Basics
• We start with the canvas element and its command-based API…
• … and then look into scene graphs

Most principles are the same for both API types:
• Primitives: Objects, from which an image is generated
• Attributes describe, how primitives are to be rendered (color, line 

width, …)
• Transformations are used to describe how objects are positioned 

within an image
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Primitives
• Graphics are composed of primitives such as

• lines
• rectangles
• circles / ellipses
• triangles
• polygons
• curves
• paths

• Each primitive has attributes such as
• fill color
• boundary color
• line / boundary width
• stipple pattern
• …
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Attributes
• We have strokes (= lines) and fills (= areas)
• For strokes, we can define

• its width → linewidth
• its color → strokeStyle
• line caps (shape of line ends)
• line dash (stipple patterns)
• …

• For fills, we can define
• its color → fillStyle
• fill patterns, fill gradients
• …

• → for more information see https://developer.mozilla.org/en-
US/docs/Web/API/Canvas_API/Tutorial/Applying_styles_and_colors
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Paths
• With canvas, most 2D objects are defined as paths
• A path is a set of (joined) lines
• We can render the path as a stroke or fill it

• Algorithms to render and fill line paths → next lecture(s)
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Primitives - Paths
• Paths can also contain circular (or elliptical) arcs
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Primitives - Paths
• Paths can also contain Bezier curves

• Bezier curves, conversion to line paths
→ lecture “Geometric Modeling”
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Primitives – Filled Paths
• A path can also be filled (algorithm see next but one lecture)
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2D Transformations
• we can also apply transformations to objects:
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Affine Transformations
• Translate, rotate, and scale are affine transformations

• Important in CG
• Positioning objects in a scene
• Object Animations
• Changing the shape of objects
• Creation of multiple copies of objects

• Can be described easily using Homogeneous Coordinates and 
Matrices
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Affine Transformations
• Coordinate Frames

• Origin 𝑂𝑂 (point)
• Coordinate axes 𝑒𝑒1, 𝑒𝑒2 (vectors)

• Standard coordinate frame
• 𝑂𝑂 = 0,0
• 𝑒𝑒1 = 1,0 , 𝑒𝑒2 = (0,1)
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Affine Transformations
• Coordinate system change:

𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝑂𝑂 + 𝑥𝑥𝑒𝑒1 + 𝑦𝑦𝑒𝑒2
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Affine Transformations
• We call such mappings Affine Mappings:

𝑥𝑥,𝑦𝑦 → 𝑒𝑒1 𝑒𝑒2
𝑥𝑥
𝑦𝑦 + 𝑂𝑂1

𝑂𝑂2
• more generally:

𝑥𝑥 → 𝐴𝐴𝑥𝑥 + 𝑡𝑡 (𝐴𝐴 ∈ ℝ2×2, 𝑡𝑡 ∈ ℝ2)
• concatenation results in another affine mapping:

𝑥𝑥′ = 𝐴𝐴1𝑥𝑥 + 𝑡𝑡1
𝑥𝑥′′ = 𝐴𝐴2𝑥𝑥′ + 𝑡𝑡2 = 𝐴𝐴2 𝐴𝐴1𝑥𝑥 + 𝑡𝑡1 + 𝑡𝑡2 = 𝐴𝐴2𝐴𝐴1𝑥𝑥 + 𝐴𝐴2𝑡𝑡1 + 𝑡𝑡2

• we can apply a simple trick that allows us to also express affine 
transformations by a single matrix

→ homogeneous coordinates
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Homogenous coordinates
• Add “1” as third homogeneous coordinate

x = (𝑥𝑥1, x2) → (𝑥𝑥1, x2, 1)

• To compute the mapping 𝐴𝐴𝑥𝑥 + 𝑡𝑡 we apply a matrix of the form

𝐴𝐴11 𝐴𝐴12 𝑡𝑡1
𝐴𝐴21 𝐴𝐴22 𝑡𝑡2

0 0 1

•
𝑥𝑥1
𝑥𝑥2
1

→
𝐴𝐴11 𝐴𝐴12 𝑡𝑡1
𝐴𝐴21 𝐴𝐴22 𝑡𝑡2

0 0 1

𝑥𝑥1
𝑥𝑥2
1

= 𝐴𝐴𝑥𝑥 + 𝑡𝑡
1
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Homogenous coordinates
• If the last row of 𝐴𝐴 is 0,0,1 the mapping is affine

→ later we see how we can also use this row to express more 
general transformation

• Structure of a general affine transformation in homogeneous 
coordinates
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Homogenous coordinates
• Transformation Rules  &  Matrix Operations

Multiplication       ≡ composition

𝑥𝑥→
𝑇𝑇
𝑇𝑇𝑥𝑥 = 𝑦𝑦→

𝑆𝑆
𝑆𝑆𝑦𝑦 = 𝑧𝑧 ≡ 𝑥𝑥

𝑆𝑆𝑇𝑇
𝑆𝑆𝑇𝑇𝑥𝑥 = 𝑧𝑧

Inverse matrix     ≡ Inverse transformation

• Note order of multiplication: 𝑆𝑆𝑇𝑇 means: first 𝑇𝑇, then 𝑆𝑆
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Affine Transformations
• Special cases

• Translations

• Rotations

• Scalings
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Affine Transformations
• Special cases

• Shearings

• Reflections
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Affine Transformations
• Classes of Affine Transformations

• Rigid
• Similarity
• Linear
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Affine Transformations
• Rigid Transformation (Euclidean Transform)

• Preserves distances
• Preserves angles
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Affine Transformations
• Rigid transformation:
𝑒𝑒1 and 𝑒𝑒2 are orthonormal and have unit length

• 𝑥𝑥 → 𝐴𝐴𝑥𝑥 + 𝑡𝑡 with 𝐴𝐴 orthogonal and det(𝐴𝐴) > 0
• Application of multiple rigid transformations is a rigid 

transformation again (also true for following classes)

• If det(𝐴𝐴) < 0, 𝐴𝐴 contains a reflection, which is not rigid
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Affine Transformations
• Similarity Transforms

• Preserves angles, but changes distances
• Rigid + (isotropic) scaling + reflection

𝑥𝑥 → 𝑐𝑐𝐴𝐴𝑥𝑥 + 𝑡𝑡 with 𝑐𝑐 ∈ ℝ and 𝐴𝐴 orthonormal
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Affine Transformations
• General Linear Transformations = affine without translation
• Origin (0,0) is always mapped to origin
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Scaling
• Examples
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Shearing
• Shearing

• Pushing things sideways (compare deck of cards)

• Horizontal  ( y-coordinate will not change )

𝑠𝑠𝑠𝑒𝑒𝑠𝑠𝑟𝑟𝑥𝑥 𝑠𝑠 =
1 𝑠𝑠 0
0 1 0
0 0 1

• Vertical      ( x-coordinate will not change )

𝑠𝑠𝑠𝑒𝑒𝑠𝑠𝑟𝑟𝑦𝑦 𝑠𝑠 =
1 0 0
𝑠𝑠 1 0
0 0 1
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Shearing
• Examples

• Horizontal shear: vertical lines → 45°to the right

• Vertical shear: horizontal lines → 45°to the top
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Simple Rotation in 2D
• Rotation

• Vector 𝒂𝒂 = (𝑠𝑠𝑥𝑥,𝑠𝑠𝑦𝑦), angle 𝛼𝛼 with 𝑥𝑥-axis

• Length 𝑟𝑟 = 𝑠𝑠𝑥𝑥2 + 𝑠𝑠𝑦𝑦2

• By definition: 𝑠𝑠𝑥𝑥 = 𝑟𝑟 cos𝛼𝛼,
𝑠𝑠𝑦𝑦 = 𝑟𝑟 sin𝛼𝛼

• Rotation by an angle φ counter-clockwise:
𝑏𝑏𝑥𝑥 = 𝑟𝑟 cos 𝛼𝛼 + 𝜙𝜙 = 𝑟𝑟 cos𝛼𝛼 cos𝜙𝜙 – 𝑟𝑟 sin𝛼𝛼 sin𝜙𝜙
𝑏𝑏𝑦𝑦 = 𝑟𝑟 sin(𝛼𝛼 + 𝜙𝜙) = 𝑟𝑟 sin𝛼𝛼 cos𝜙𝜙 + 𝑟𝑟 cos𝛼𝛼 sin𝜙𝜙
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Simple Rotation in 2D
• After substitution

• 𝑏𝑏𝑥𝑥 = 𝑠𝑠𝑥𝑥 cos𝜙𝜙 − 𝑠𝑠𝑦𝑦 sin𝜙𝜙
• 𝑏𝑏𝑦𝑦 = 𝑠𝑠y cos𝜙𝜙 + 𝑠𝑠𝑥𝑥 sin 𝜙𝜙

• Matrix form taking 𝑠𝑠 to 𝑏𝑏

𝑟𝑟𝑟𝑟𝑡𝑡𝑠𝑠𝑡𝑡𝑒𝑒 𝜙𝜙 =
cos𝜙𝜙 − sin𝜙𝜙 0
sin𝜙𝜙 cos𝜙𝜙 0

0 0 1
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Simple Rotation in 2D
• Rotation by 45°counter-clockwise 

• Rotation by 30° clockwise 
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Reflection
• Reflection

• Reflect a vector across either of the coordinate axes
• Determinant of a reflection is negative
• About 𝑥𝑥-axis (multiply 𝑦𝑦 by -1):
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Reflection
• Across y-axis (multiply x coordinates by -1)
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Linear Transformations
• Compositing of 2D transformations

• First 𝑣𝑣2 = 𝑆𝑆𝑣𝑣1 then 𝑣𝑣3 = 𝑅𝑅𝑣𝑣2
• Equivalently 𝑣𝑣3 = 𝑅𝑅 𝑆𝑆𝑣𝑣1 = 𝑅𝑅𝑆𝑆 𝑣𝑣1
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Linear Transformations
• Matrix multiplications are associative:

𝑅𝑅𝑆𝑆 𝑇𝑇 = 𝑅𝑅 𝑆𝑆𝑇𝑇 → 𝑣𝑣3 = 𝑅𝑅𝑆𝑆 𝑣𝑣1 = 𝑀𝑀𝑣𝑣1 with 𝑀𝑀 = 𝑅𝑅𝑆𝑆

• Matrix multiplications are not commutative
• The order of transformations does matter !!!
• Note the difference

• Scaling then rotating
• Rotating then scaling
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Linear Transformations
• Note that the order of transformations is important
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Linear Transformations
• Decomposition of transformations

• Write some transformation 𝑀𝑀 as the product of certain classes of matrices

• In 2D: Decomposition of any linear 2D transform into product: 
rotation → scale → rotation = 𝑅𝑅2𝑆𝑆𝑅𝑅1

• From existence of singular value decomposition (SVD)  
(Singulärwertzerlegung, Ausgleichsprobleme)

• Note that the scale can have negative entries
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Linear Transformations
• Example: shearing   

• 𝜎𝜎𝑖𝑖 singular values, 𝑅𝑅1 and 𝑅𝑅2 rotations
1 1
0 1 = 𝑅𝑅2

𝜎𝜎1 0
0 𝜎𝜎2

𝑅𝑅1

= 0.851 −0.526
0.526 0.851

1.618 0
0 0.618

0.526 0.851
−0.851 0.526
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Linear Transformations
• Matrix decomposition: represent rotations with shears

cos𝜙𝜙 −sin𝜙𝜙
sin𝜙𝜙 cos𝜙𝜙 = 1

cos𝜙𝜙 − 1
sin𝜙𝜙

0 1

1 0
sin𝜙𝜙 1

1
cos𝜙𝜙 − 1

sin𝜙𝜙
0 1

• Useful for raster rotation
• Very efficient raster operation for images: only column-wise  and row-wise 

operations!
• Introduces some jaggies but no holes
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Linear Transformations

• 𝑟𝑟𝑟𝑟𝑡𝑡𝑠𝑠𝑡𝑡𝑒𝑒 𝜋𝜋
4

= 𝑆𝑆3𝑆𝑆2𝑆𝑆1 = 1 1 − 2
0 1

1 0
2
2

1
1 1 − 2
0 1
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Linear Transformations
• Images – simple raster rotation

• Take raster position (𝑠𝑠, 𝑗𝑗) and apply horizontal shear

1 𝑠𝑠
0 1

𝑠𝑠
𝑗𝑗 = 𝑠𝑠 + 𝑠𝑠𝑗𝑗

𝑗𝑗

• Round 𝑠𝑠𝑗𝑗 to nearest integer: in every row a constant shift
• Move each row sideways by a different amount
• Resulting image has no gaps
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Example
• Affine Transformations with the HTML Canvas
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HTML5 SVG (Scalable Vector Graphics)
• Scene Graph based Graphics APIs
• contains primitives as children, including their attributes

(note the slightly different attribute names)

• for more information see:
https://developer.mozilla.org/de/docs/Web/SVG
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HTML5 SVG (Scalable Vector Graphics)
• primitives can be grouped using a group node with tag “g”

• nodes form a tree
• attributes from inner nodes are valid for entire subtree
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HTML5 SVG (Scalable Vector Graphics)
• nodes can be transformed using an attribute “transform”
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HTML5 SVG (Scalable Vector Graphics)
• In the previous example the leaf nodes are identical
• reuse one instance multiple times → use elements
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Scene Graph
• reusing nodes turns the scene tree into a scene graph
• more precisely, a directed acyclic graph = DAG
• such a graph can be traversed just like a tree
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Scene Graph
• universal data structure to describe scenes

→ hierarchical modeling
• to render such a scene graph, we have to

• traverse graph depth first
• remember current attributes
• accumulate transformations
• rasterize leaf nodes with these attributes and transformations

• We will come back to scene graphs later on
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Next lectures …
• Rasterization of lines and Polygons
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