#### Lecture #02

## 2D Graphics

Computer Graphics Winter term 2020/21

Marc Stamminger

#### Rendering

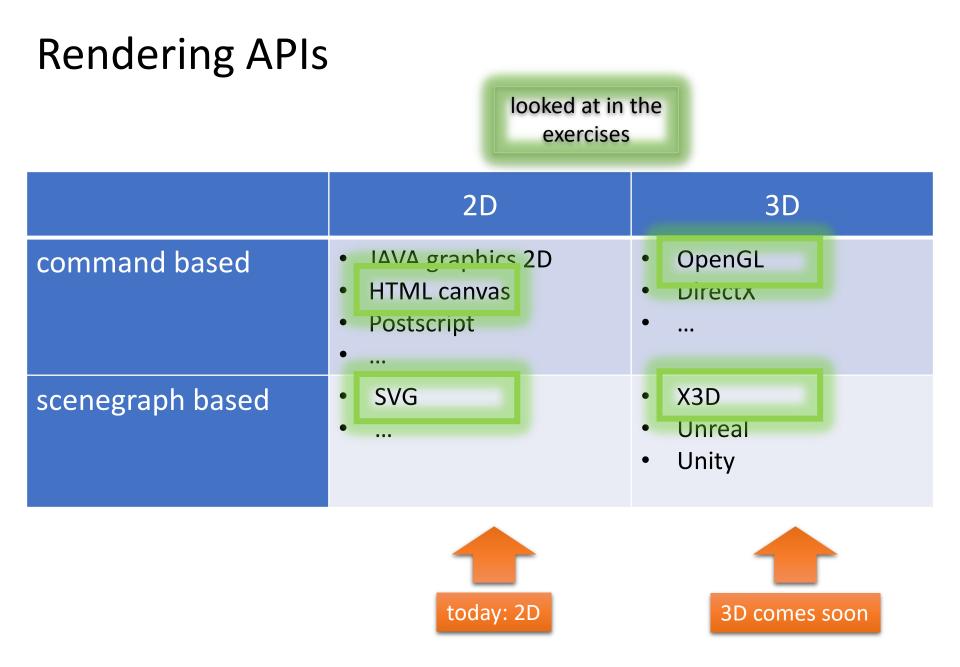
- "Rendering":
  - fill frame buffer with shapes, text, 3D-content, ...
- Examples:
  - render a rectangle  $\rightarrow$  simple
  - render a circle with radius r and center  $(x, y) \rightarrow ???$
  - render a line from  $(x_1, y_1)$  to  $(x_2, y_2) \rightarrow ???$
  - fill a triangle with vertices  $(x_1, y_1), (x_2, y_2), (x_3, y_3) \rightarrow ???$
  - $\rightarrow$  next week "Rasterization"

#### Rendering

- Frame buffer is usually not written directly, but via a Graphics API
- Today we will have a brief look into such APIs, but this is not the general topic of this lecture
- Mostly, we learn about **the algorithms** for rendering
- In the exercises, we will also look at the graphics APIs

#### Rendering

- Command-based APIs:
  - a library containing functions that render primitives, such as lines, rectangles, circles or similar
  - oftentimes, this includes the interaction with the GPU (a special device on the computer that is solely responsible for rendering)
- Scenegraph-based APIs:
  - the scene to be rendered is defined in an abstract manner in a hierarchical (tree-like) structure, which is passed to the renderer as a whole
  - In HTML, this can be integrated into the normal document hierarchy (see later)
- 3D:
  - the primitives to be rendered are defined in 3D-space. A virtual camera is to be specified that defines the mapping of the 3D-world to the 2D image. Also occlusion must be considered.



#### Today: 2D Graphics APIs

- We look into graphics APIs provided by HTML
- HTML-elements that can be filled with 2D graphics:
- Canvas Element: Command-based API
- SVG Element: Scenegraph-based API



#### HTML

#### • To use these, we must know very basic HTML

| Hello World                | Hello Canvas | Hello SVG |      |              |
|----------------------------|--------------|-----------|------|--------------|
| kbody><br>Hello World!<br> |              |           | >>>> | Hello World! |

#### HTML5 Canvas

• We start with canvas. For more information see:

https://developer.mozilla.org/de/docs/Web/Guide/HTML/Canvas\_Tutorial



#### **2D Graphics - Basics**

- We start with the canvas element and its command-based API...
- ... and then look into scene graphs

Most principles are the same for both API types:

- Primitives: Objects, from which an image is generated
- Attributes describe, how primitives are to be rendered (color, line width, ...)
- **Transformations** are used to describe how objects are positioned within an image

#### Primitives

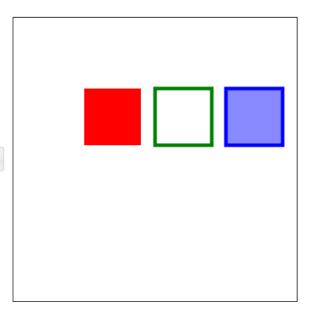
- Graphics are composed of *primitives* such as
  - lines
  - rectangles
  - circles / ellipses
  - triangles
  - polygons
  - curves
  - paths
- Each primitive has attributes such as
  - fill color
  - boundary color
  - line / boundary width
  - stipple pattern
  - ...



#### Rectangles

#### Rectangle

| 1   | <pre>var context = canvas.getContext("2d");</pre> |
|-----|---------------------------------------------------|
| 2   | <pre>context.fillStyle = 'red';</pre>             |
| 3   | <pre>context.fillRect(100,100,80,80);</pre>       |
| 4   |                                                   |
| 5   | <pre>context.strokeStyle = 'green';</pre>         |
| 6   | <pre>context.lineWidth = 5;</pre>                 |
| i 7 | context.strokeRect(200,100,80,80)                 |
| 8   |                                                   |
| 9   | <pre>context.fillStyle = '#88f';</pre>            |
| 10  | <pre>context.strokeStyle = '#00f';</pre>          |
| 11  | <pre>context.lineWidth = 5;</pre>                 |
| 12  | context.fillRect(300,100,80,80);                  |
| 13  | context.strokeRect(300,100,80,80);                |
|     |                                                   |
|     |                                                   |
|     |                                                   |
|     |                                                   |
|     |                                                   |
|     |                                                   |
|     |                                                   |
|     |                                                   |
|     |                                                   |



>>>>

#### Attributes

- We have strokes (= lines) and fills (= areas)
- For strokes, we can define
  - its width  $\rightarrow$  linewidth
  - its color  $\rightarrow$  strokeStyle
  - line caps (shape of line ends)
  - line dash (stipple patterns)

• ...

- For fills, we can define
  - its color  $\rightarrow$  fillStyle
  - fill patterns, fill gradients

• ...

• → for more information see <a href="https://developer.mozilla.org/en-US/docs/Web/API/Canvas\_API/Tutorial/Applying\_styles\_and\_colors">https://developer.mozilla.org/en-US/docs/Web/API/Canvas\_API/Tutorial/Applying\_styles\_and\_colors</a>

#### Paths

- With canvas, most 2D objects are defined as paths
- A path is a set of (joined) lines
- We can render the path as a stroke or fill it

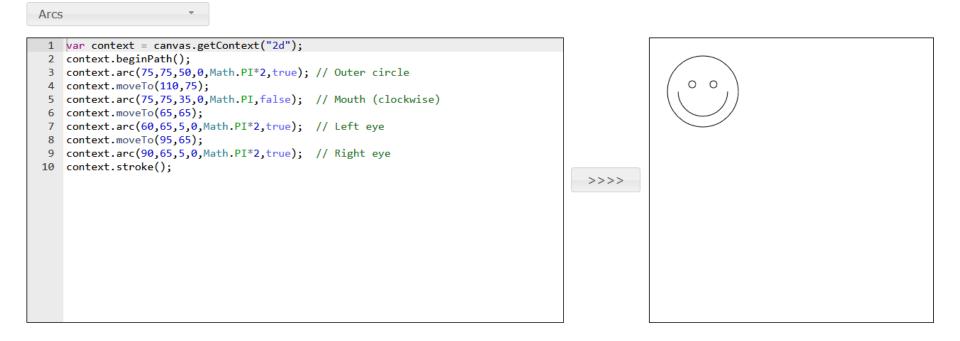


#### • Algorithms to render and fill line paths $\rightarrow$ next lecture(s)



#### **Primitives - Paths**

• Paths can also contain circular (or elliptical) arcs



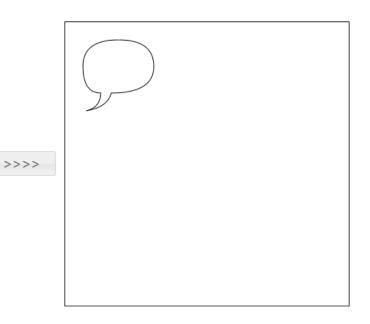


#### **Primitives - Paths**

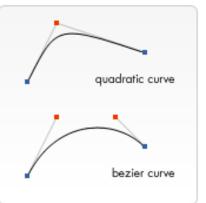
#### • Paths can also contain Bezier curves

Beziér Curves





# Bezier curves, conversion to line paths → lecture "Geometric Modeling"





#### Primitives – Filled Paths

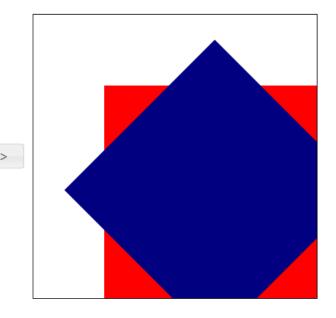
• A path can also be filled (algorithm see next but one lecture)

| Fille | d Path 🔹                                               |      |   |
|-------|--------------------------------------------------------|------|---|
| 1     | <pre>var context = canvas.getContext("2d");</pre>      |      |   |
| 2     |                                                        |      |   |
| 3     | <pre>context.moveTo(75,25);</pre>                      |      |   |
| 4     | <pre>context.quadraticCurveTo(25,25,25,62.5);</pre>    |      |   |
| 5     | <pre>context.quadraticCurveTo(25,100,50,100);</pre>    |      |   |
| 6     | <pre>context.quadraticCurveTo(50,120,30,125);</pre>    |      | 7 |
| 7     | <pre>context.quadraticCurveTo(60,120,65,100);</pre>    |      |   |
| 8     | <pre>context.quadraticCurveTo(125,100,125,62.5);</pre> |      |   |
| 9     | <pre>context.quadraticCurveTo(125,25,75,25);</pre>     |      |   |
| 10    |                                                        |      |   |
| 11    | <pre>context.strokeStyle = "#000000";</pre>            | >>>> |   |
| 12    | <pre>context.lineWidth = 5;</pre>                      |      |   |
| 13    | context.stroke();                                      |      |   |
| 14    |                                                        |      |   |
| 15    | <pre>context.fillStyle = "pink";</pre>                 |      |   |
| 16    | <pre>context.fill();</pre>                             |      |   |
|       |                                                        |      |   |
|       |                                                        |      |   |
|       |                                                        |      |   |
|       |                                                        |      |   |
|       |                                                        |      |   |

#### 2D Transformations

• we can also apply transformations to objects:



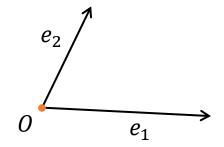


- Translate, rotate, and scale are affine transformations
- Important in CG
  - Positioning objects in a scene
  - Object Animations
  - Changing the shape of objects
  - Creation of multiple copies of objects
- Can be described easily using Homogeneous Coordinates and Matrices

#### Coordinate Frames

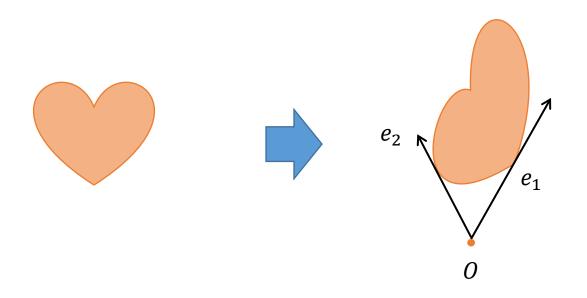
- Origin *O* (point)
- Coordinate axes  $e_1, e_2$  (vectors)
- Standard coordinate frame
  - 0 = (0,0)

• 
$$e_1 = (1,0), e_2 = (0,1)$$

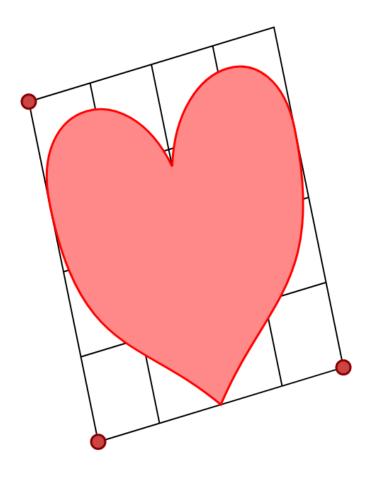


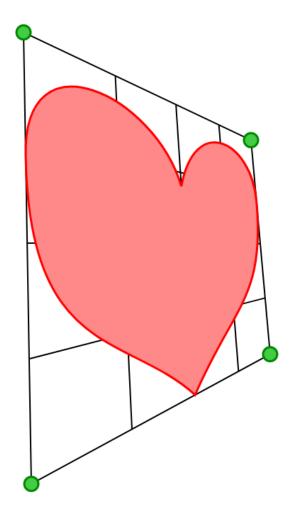
• Coordinate system change:

 $f(x, y) = 0 + xe_1 + ye_2$ 



Ę





- We call such mappings Affine Mappings:  $(x, y) \rightarrow \begin{pmatrix} e_1 & e_2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 0_1 \\ 0_2 \end{pmatrix}$
- more generally:

$$x \rightarrow Ax + t$$
  $(A \in \mathbb{R}^{2 \times 2}, t \in \mathbb{R}^2)$ 

• concatenation results in another affine mapping:

$$\begin{aligned} x' &= A_1 x + t_1 \\ x'' &= A_2 x' + t_2 = A_2 (A_1 x + t_1) + t_2 = \underbrace{A_2 A_1 x}_{A_{concat}} + \underbrace{A_2 t_1 + t_2}_{t_{concat}} \end{aligned}$$

- we can apply a simple trick that allows us to also express affine transformations by a single matrix
  - $\rightarrow$  homogeneous coordinates

#### Homogenous coordinates

• Add "1" as third homogeneous coordinate

$$\mathbf{x} = (x_1, \mathbf{x}_2) \to (x_1, \mathbf{x}_2, 1)$$

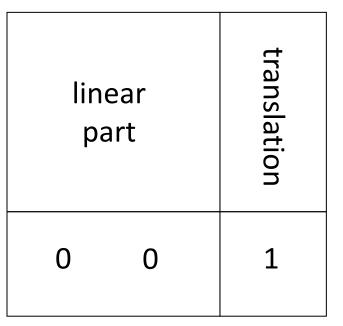
• To compute the mapping Ax + t we apply a matrix of the form

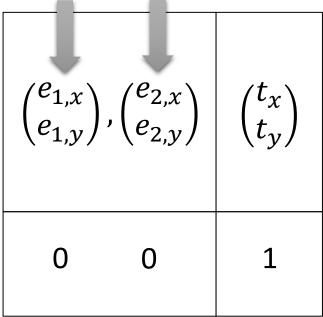
$$\begin{pmatrix} A_{11} & A_{12} & t_1 \\ A_{21} & A_{22} & t_2 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\bullet \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix} \to \begin{pmatrix} A_{11} & A_{12} & t_1 \\ A_{21} & A_{22} & t_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix} = \begin{pmatrix} Ax + t \\ 1 \end{pmatrix}$$

#### Homogenous coordinates

- If the last row of A is (0,0,1) the mapping is affine
   → later we see how we can also use this row to express more
   general transformation
- Structure of a general affine transformation in homogeneous coordinates basis vectors after transf.





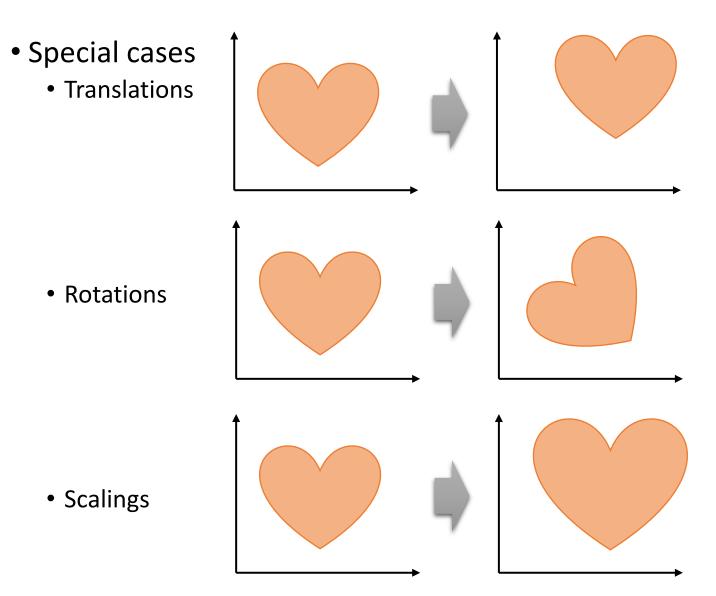
#### Homogenous coordinates

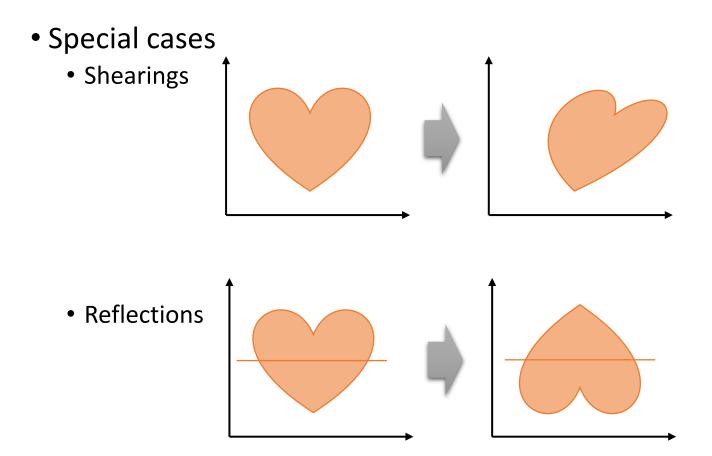
• Transformation Rules & Matrix Operations

Multiplication  $\equiv$  composition  $x \xrightarrow{T} Tx = y \xrightarrow{S} Sy = z \equiv x \xrightarrow{ST} STx = z$ 

Inverse matrix  $\equiv$  Inverse transformation

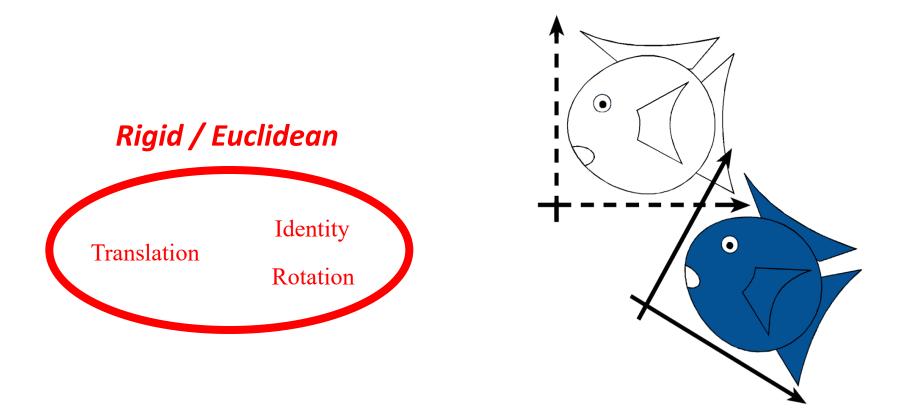
• Note order of multiplication: *ST* means: first *T*, then *S* 





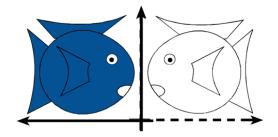
- Classes of Affine Transformations
  - Rigid
  - Similarity
  - Linear

- Rigid Transformation (Euclidean Transform)
  - Preserves distances
  - Preserves angles

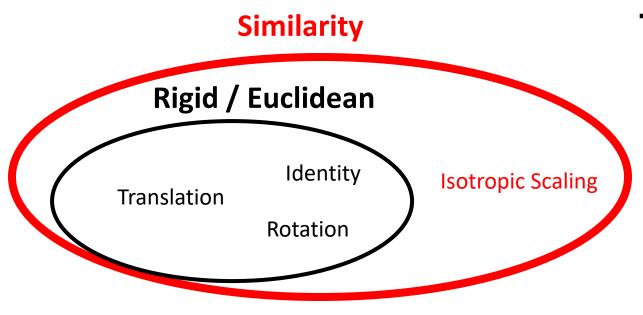


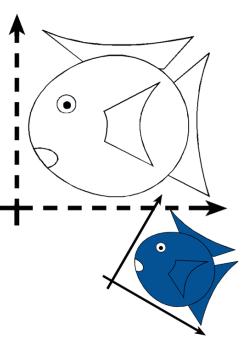
- Rigid transformation:  $e_1$  and  $e_2$  are orthonormal and have unit length
- $x \rightarrow Ax + t$  with A orthogonal and det(A) > 0
- Application of multiple rigid transformations is a rigid transformation again (also true for following classes)

• If det(A) < 0, A contains a reflection, which is not rigid

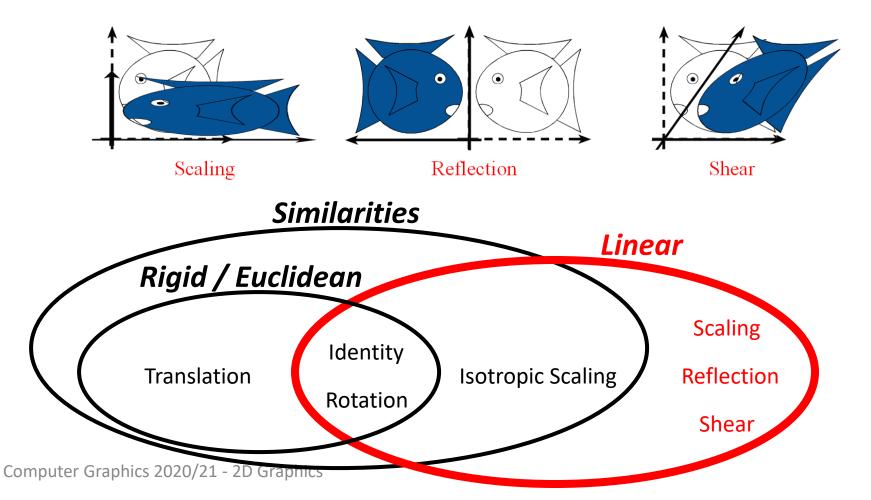


- Similarity Transforms
  - Preserves angles, but changes distances
  - Rigid + (isotropic) scaling + reflection
- $x \rightarrow cAx + t$  with  $c \in \mathbb{R}$  and A orthonormal



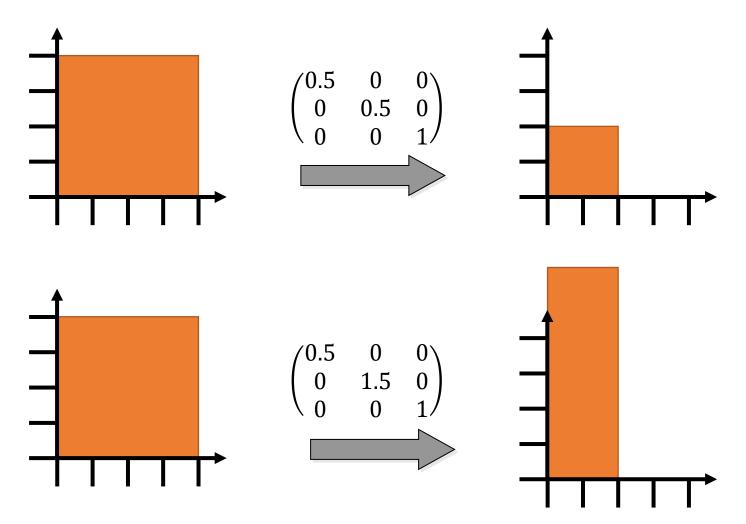


- General Linear Transformations = affine without translation
- Origin (0,0) is always mapped to origin



#### Scaling

• Examples



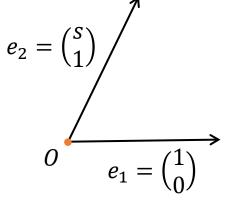
#### Shearing

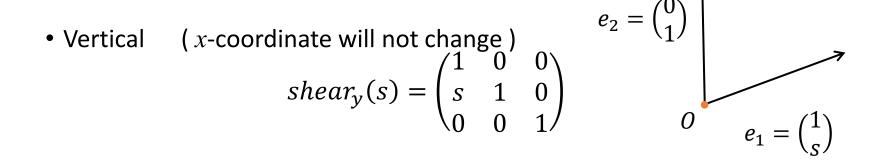
• Shearing

• Pushing things sideways (compare deck of cards)

• Horizontal (y-coordinate will not change)

$$shear_{x}(s) = \begin{pmatrix} 1 & s & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

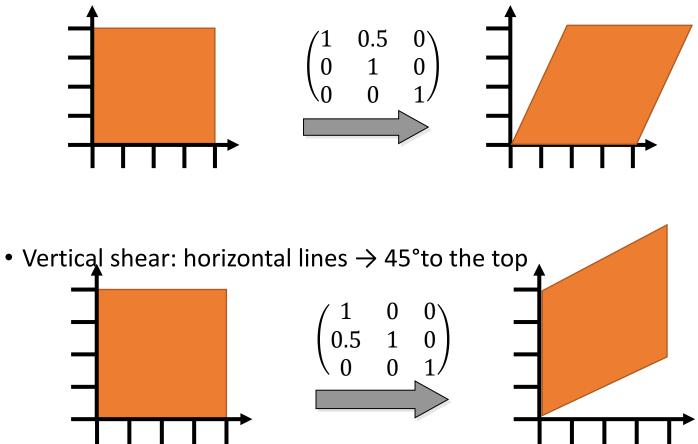




## Shearing

• Examples

• Horizontal shear: vertical lines  $\rightarrow$  45°to the right

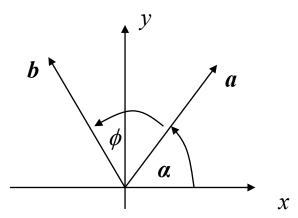


### Simple Rotation in 2D

- Rotation
  - Vector  $\boldsymbol{a} = (a_x, a_y)$ , angle  $\alpha$  with x-axis
  - Length  $r = \sqrt{a_x^2 + a_y^2}$
  - By definition:  $a_x = r \cos \alpha$ ,  $a_y = r \sin \alpha$
  - Rotation by an angle  $\phi$  counter-clockwise:

$$b_x = r \cos(\alpha + \phi) = r \cos \alpha \cos \phi - r \sin \alpha \sin \phi$$
  

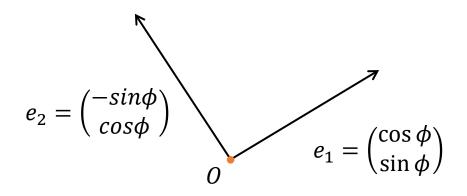
$$b_y = r \sin(\alpha + \phi) = r \sin \alpha \cos \phi + r \cos \alpha \sin \phi$$



### Simple Rotation in 2D

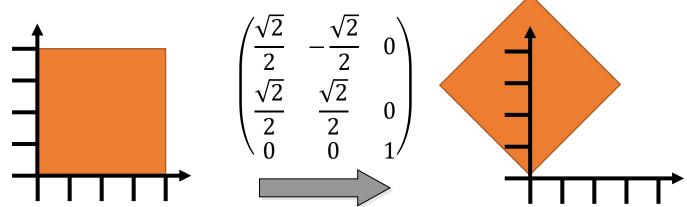
- After substitution
  - $b_x = a_x \cos \phi a_y \sin \phi$
  - $b_y = a_y \cos \phi + a_x \sin \phi$
- Matrix form taking a to b

$$rotate(\phi) = \begin{pmatrix} \cos\phi & -\sin\phi & 0\\ \sin\phi & \cos\phi & 0\\ 0 & 0 & 1 \end{pmatrix}$$

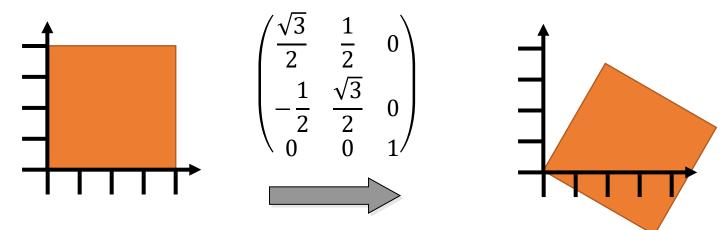


# Simple Rotation in 2D

Rotation by 45° counter-clockwise

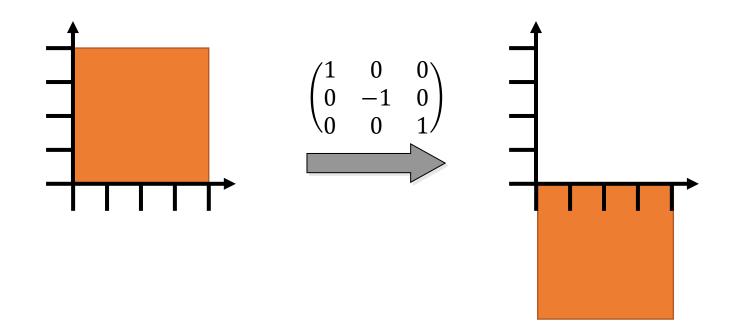


Rotation by 30° clockwise



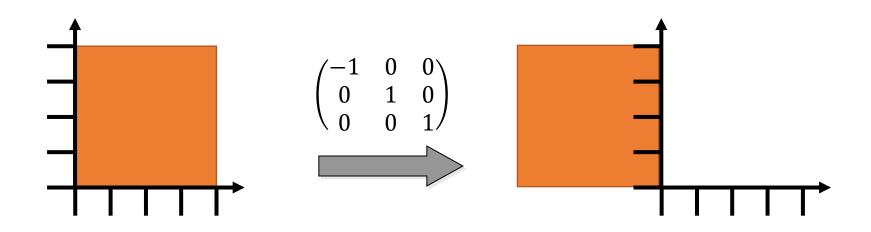
### Reflection

- Reflection
  - Reflect a vector across either of the coordinate axes
  - Determinant of a reflection is negative
  - About *x*-axis (multiply *y* by -1):



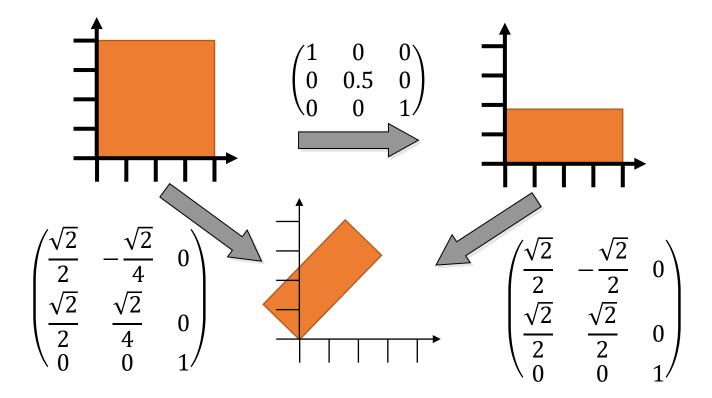
### Reflection

• Across *y*-axis (multiply *x* coordinates by -1)



• Compositing of 2D transformations

- First  $v_2 = Sv_1$  then  $v_3 = Rv_2$
- Equivalently  $v_3 = R(Sv_1) = (RS)v_1$

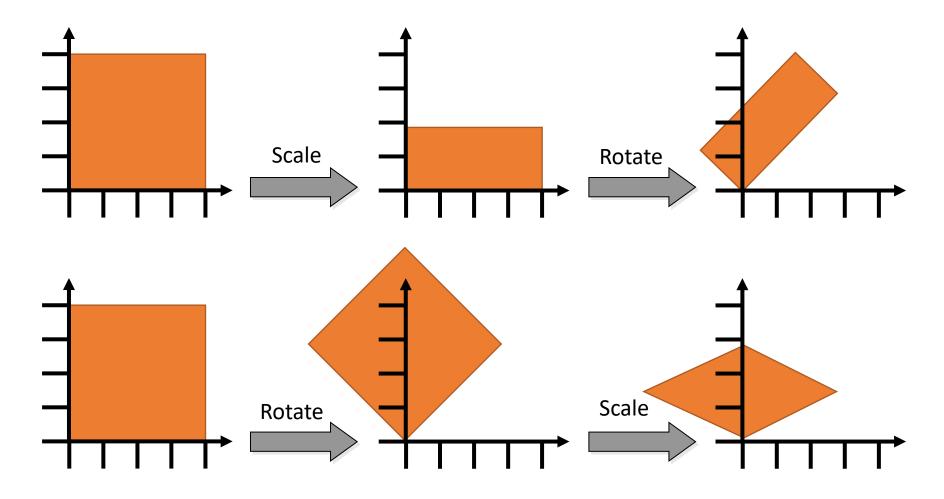


• Matrix multiplications are associative:

 $(RS)T = R(ST) \rightarrow v_3 = (RS)v_1 = Mv_1$  with M = RS

- Matrix multiplications are **not** commutative
  - The order of transformations does matter !!!
  - Note the difference
    - Scaling then rotating
    - Rotating then scaling

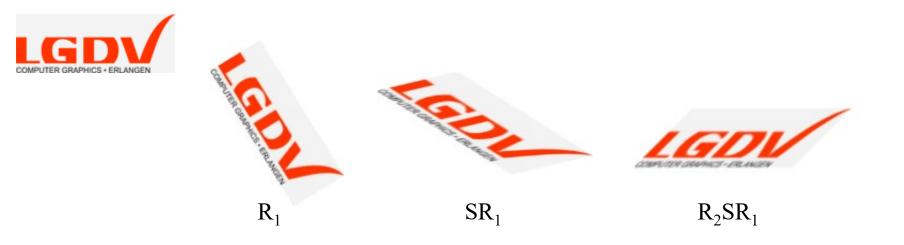
• Note that the order of transformations is important



- Decomposition of transformations
  - Write some transformation M as the product of certain classes of matrices
- In 2D: Decomposition of any linear 2D transform into product: rotation  $\rightarrow$  scale  $\rightarrow$  rotation =  $R_2SR_1$ 
  - From existence of singular value decomposition (SVD) (Singulärwertzerlegung, Ausgleichsprobleme)
  - Note that the scale can have negative entries

- Example: shearing
  - $\sigma_i$  singular values,  $R_1$  and  $R_2$  rotations

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = R_2 \begin{pmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \end{pmatrix} R_1 = \begin{pmatrix} 0.851 & -0.526 \\ 0.526 & 0.851 \end{pmatrix} \begin{pmatrix} 1.618 & 0 \\ 0 & 0.618 \end{pmatrix} \begin{pmatrix} 0.526 & 0.851 \\ -0.851 & 0.526 \end{pmatrix}$$

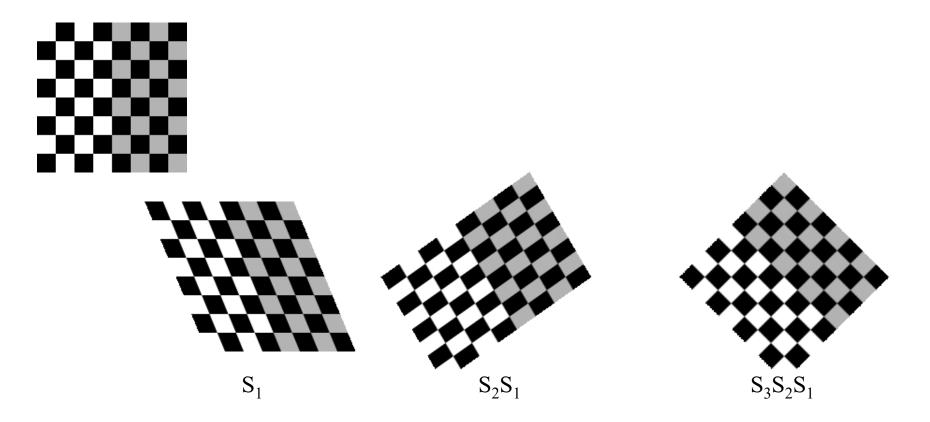


• Matrix decomposition: represent rotations with shears

$$\begin{pmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{pmatrix} = \begin{pmatrix} 1 & \frac{\cos\phi - 1}{\sin\phi} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \sin\phi & 1 \end{pmatrix} \begin{pmatrix} 1 & \frac{\cos\phi - 1}{\sin\phi} \\ 0 & 1 \end{pmatrix}$$

- Useful for raster rotation
  - Very efficient raster operation for images: only column-wise and row-wise operations!
  - Introduces some jaggies but no holes

• rotate 
$$\left(\frac{\pi}{4}\right) = S_3 S_2 S_1 = \begin{pmatrix} 1 & 1 - \sqrt{2} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \frac{\sqrt{2}}{2} & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 - \sqrt{2} \\ 0 & 1 \end{pmatrix}$$



- Images simple raster rotation
  - Take raster position (i, j) and apply horizontal shear

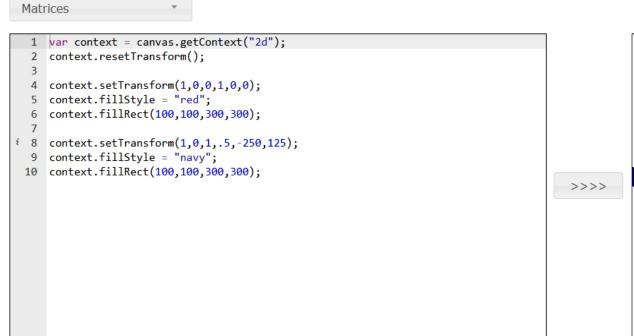
$$\begin{pmatrix} 1 & s \\ 0 & 1 \end{pmatrix} \begin{pmatrix} i \\ j \end{pmatrix} = \begin{pmatrix} i + sj \\ j \end{pmatrix}$$

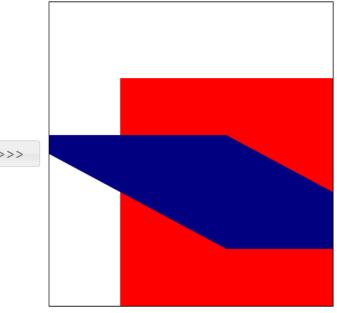
- Round *sj* to nearest integer: in every row a constant shift
- Move each row sideways by a different amount
- Resulting image has no gaps



### Example

### • Affine Transformations with the HTML Canvas





### • Scene Graph based Graphics APIs

 contains primitives as children, including their attributes (note the slightly different attribute names)

Circles and rectangles



• for more information see:

https://developer.mozilla.org/de/docs/Web/SVG

Computer Graphics 2020/21 - 2D Graphics

- primitives can be grouped using a group node with tag "g"
  - nodes form a tree

Groups

• attributes from inner nodes are valid for entire subtree

| Groups                                                |  |
|-------------------------------------------------------|--|
| <pre>i 1 kg stroke="black" stroke-width="5"&gt;</pre> |  |



### nodes can be transformed using an attribute "transform"

| Transformations •                                       |  |
|---------------------------------------------------------|--|
| <pre>i 1 * kg stroke="black" stroke-width="5"&gt;</pre> |  |

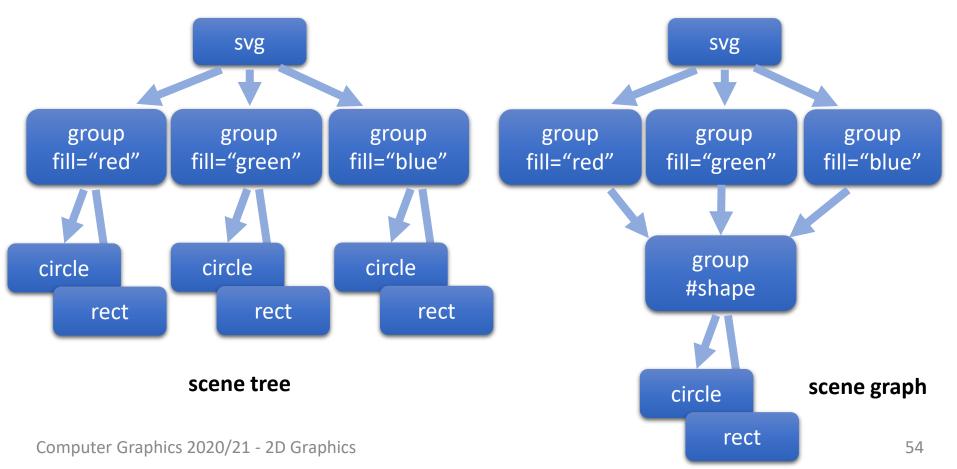
- In the previous example the leaf nodes are identical
- reuse one instance multiple times  $\rightarrow$  **use** elements

Scene Graph

```
i 1 * Kdefs>
  2 -
         <g id="shape">
             <circle cy="-50" r="40"></circle>
  3
             <rect x="-40" width="80" height="100"></rect>
  4
  5
         </g>
    </defs>
  6
  7 <g stroke="black" stroke-width="5">
         <g fill="red" transform="translate(80,150)">
  8 -
  9
             <use xlink:href="#shape"></use>
 10
         </g>
         <g fill="green" transform="matrix(0.7 0 0 0.7 200 150)">
 11 -
                                                                                           >>>>
 12
             <use xlink:href="#shape"></use>
 13
         </g>
         <g fill="blue" transform="translate(320,150) rotate(20)">
 14 -
 15
             <use xlink:href="#shape"></use>
 16
         </g>
 17 </g>
```

### Scene Graph

- reusing nodes turns the scene tree into a scene graph
- more precisely, a directed acyclic graph = DAG
- such a graph can be traversed just like a tree



### Scene Graph

- universal data structure to describe scenes
   → hierarchical modeling
- to render such a scene graph, we have to
  - traverse graph depth first
  - remember current attributes
  - accumulate transformations
  - rasterize leaf nodes with these attributes and transformations
- We will come back to scene graphs later on

### Next lectures ...

• Rasterization of lines and Polygons