
Lecture #02

2D Graphics

Computer Graphics
Winter term 2020/21

Marc Stamminger

Rendering
• “Rendering”:

• fill frame buffer with shapes, text, 3D-content, …

• Examples:
• render a rectangle → simple
• render a circle with radius 𝑟𝑟 and center (𝑥𝑥,𝑦𝑦) → ???
• render a line from 𝑥𝑥1,𝑦𝑦1 to (𝑥𝑥2,𝑦𝑦2) → ???
• fill a triangle with vertices 𝑥𝑥1,𝑦𝑦1 , 𝑥𝑥2,𝑦𝑦2 , 𝑥𝑥3,𝑦𝑦3 → ???
• → next week “Rasterization”

Computer Graphics 2020/21 - 2D Graphics 2

Rendering
• Frame buffer is usually not written directly, but via a Graphics API

• Today we will have a brief look into such APIs, but this is not the
general topic of this lecture

• Mostly, we learn about the algorithms for rendering
• In the exercises, we will also look at the graphics APIs

Computer Graphics 2020/21 - 2D Graphics 3

Rendering
• Command-based APIs:

• a library containing functions that render primitives, such as lines,
rectangles, circles or similar

• oftentimes, this includes the interaction with the GPU (a special device on
the computer that is solely responsible for rendering)

• Scenegraph-based APIs:
• the scene to be rendered is defined in an abstract manner in a hierarchical

(tree-like) structure, which is passed to the renderer as a whole
• In HTML, this can be integrated into the normal document hierarchy

(see later)

• 3D:
• the primitives to be rendered are defined in 3D-space. A virtual camera is to

be specified that defines the mapping of the 3D-world to the 2D image. Also
occlusion must be considered.

Computer Graphics 2020/21 - 2D Graphics 4

Rendering APIs

2D 3D

command based • JAVA graphics 2D
• HTML canvas
• Postscript
• …

• OpenGL
• DirectX
• …

scenegraph based • SVG
• …

• X3D
• Unreal
• Unity

Computer Graphics 2020/21 - 2D Graphics 5

today: 2D 3D comes soon

looked at in the
exercises

Today: 2D Graphics APIs
• We look into graphics APIs provided by HTML
• HTML-elements that can be filled with 2D graphics:

• Canvas Element: Command-based API

• SVG Element: Scenegraph-based API

Computer Graphics 2020/21 - 2D Graphics 6

HTML
• To use these, we must know very basic HTML

Computer Graphics 2020/21 - 2D Graphics 7

Vorführender
Präsentationsnotizen
LiveSlide
https://lehre.lgdv.tf.fau.de/CG/Demos/HTML.html

HTML5 Canvas
• We start with canvas. For more information see:
https://developer.mozilla.org/de/docs/Web/Guide/HTML/Canvas_Tutorial

Computer Graphics 2020/21 - 2D Graphics 8

https://developer.mozilla.org/de/docs/Web/Guide/HTML/Canvas_Tutorial

2D Graphics - Basics
• We start with the canvas element and its command-based API…
• … and then look into scene graphs

Most principles are the same for both API types:
• Primitives: Objects, from which an image is generated
• Attributes describe, how primitives are to be rendered (color, line

width, …)
• Transformations are used to describe how objects are positioned

within an image

Computer Graphics 2020/21 - 2D Graphics 9

Primitives
• Graphics are composed of primitives such as

• lines
• rectangles
• circles / ellipses
• triangles
• polygons
• curves
• paths

• Each primitive has attributes such as
• fill color
• boundary color
• line / boundary width
• stipple pattern
• …

Computer Graphics 2020/21 - 2D Graphics 10

Computer Graphics 2020/21 - 2D Graphics 11

Rectangles

Vorführender
Präsentationsnotizen
LiveSlide
https://lehre.lgdv.tf.fau.de/CG/Demos/HTMLCanvas.html?sel=rect

Attributes
• We have strokes (= lines) and fills (= areas)
• For strokes, we can define

• its width → linewidth
• its color → strokeStyle
• line caps (shape of line ends)
• line dash (stipple patterns)
• …

• For fills, we can define
• its color → fillStyle
• fill patterns, fill gradients
• …

• → for more information see https://developer.mozilla.org/en-
US/docs/Web/API/Canvas_API/Tutorial/Applying_styles_and_colors

Computer Graphics 2020/21 - 2D Graphics 12

https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial/Applying_styles_and_colors

Paths
• With canvas, most 2D objects are defined as paths
• A path is a set of (joined) lines
• We can render the path as a stroke or fill it

• Algorithms to render and fill line paths → next lecture(s)

Computer Graphics 2020/21 - 2D Graphics 13

Vorführender
Präsentationsnotizen
LiveSlide
https://lehre.lgdv.tf.fau.de/CG/Demos/HTMLCanvas.html?sel=path-1

Primitives - Paths
• Paths can also contain circular (or elliptical) arcs

Computer Graphics 2020/21 - 2D Graphics 14

Vorführender
Präsentationsnotizen
LiveSlide
https://lehre.lgdv.tf.fau.de/CG/Demos/HTMLCanvas.html?sel=path-2

Primitives - Paths
• Paths can also contain Bezier curves

• Bezier curves, conversion to line paths
→ lecture “Geometric Modeling”

Computer Graphics 2020/21 - 2D Graphics 15

Vorführender
Präsentationsnotizen
LiveSlide
https://lehre.lgdv.tf.fau.de/CG/Demos/HTMLCanvas.html?sel=path-3

Primitives – Filled Paths
• A path can also be filled (algorithm see next but one lecture)

Computer Graphics 2020/21 - 2D Graphics 16

Vorführender
Präsentationsnotizen
LiveSlide
https://lehre.lgdv.tf.fau.de/CG/Demos/HTMLCanvas.html?sel=path-4

2D Transformations
• we can also apply transformations to objects:

Computer Graphics 2020/21 - 2D Graphics 17

Vorführender
Präsentationsnotizen
LiveSlide
https://lehre.lgdv.tf.fau.de/CG/Demos/HTMLCanvas.html?sel=trans-1

Affine Transformations
• Translate, rotate, and scale are affine transformations

• Important in CG
• Positioning objects in a scene
• Object Animations
• Changing the shape of objects
• Creation of multiple copies of objects

• Can be described easily using Homogeneous Coordinates and
Matrices

Computer Graphics 2020/21 - 2D Graphics 18

Affine Transformations
• Coordinate Frames

• Origin 𝑂𝑂 (point)
• Coordinate axes 𝑒𝑒1, 𝑒𝑒2 (vectors)

• Standard coordinate frame
• 𝑂𝑂 = 0,0
• 𝑒𝑒1 = 1,0 , 𝑒𝑒2 = (0,1)

Computer Graphics 2020/21 - 2D Graphics 19

𝑒𝑒2

𝑒𝑒1𝑂𝑂

Affine Transformations
• Coordinate system change:

𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝑂𝑂 + 𝑥𝑥𝑒𝑒1 + 𝑦𝑦𝑒𝑒2

Computer Graphics 2020/21 - 2D Graphics 20

𝑒𝑒2
𝑒𝑒1

𝑂𝑂

Computer Graphics 2020/21 - 2D Graphics 21

Affine Transformations

Vorführender
Präsentationsnotizen
LiveSlide
https://lehre.lgdv.tf.fau.de/CG/Demos/Affine.html

Affine Transformations
• We call such mappings Affine Mappings:

𝑥𝑥,𝑦𝑦 → 𝑒𝑒1 𝑒𝑒2
𝑥𝑥
𝑦𝑦 + 𝑂𝑂1

𝑂𝑂2
• more generally:

𝑥𝑥 → 𝐴𝐴𝑥𝑥 + 𝑡𝑡 (𝐴𝐴 ∈ ℝ2×2, 𝑡𝑡 ∈ ℝ2)
• concatenation results in another affine mapping:

𝑥𝑥′ = 𝐴𝐴1𝑥𝑥 + 𝑡𝑡1
𝑥𝑥′′ = 𝐴𝐴2𝑥𝑥′ + 𝑡𝑡2 = 𝐴𝐴2 𝐴𝐴1𝑥𝑥 + 𝑡𝑡1 + 𝑡𝑡2 = 𝐴𝐴2𝐴𝐴1𝑥𝑥 + 𝐴𝐴2𝑡𝑡1 + 𝑡𝑡2

• we can apply a simple trick that allows us to also express affine
transformations by a single matrix

→ homogeneous coordinates

Computer Graphics 2020/21 - 2D Graphics 22

𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

Homogenous coordinates
• Add “1” as third homogeneous coordinate

x = (𝑥𝑥1, x2) → (𝑥𝑥1, x2, 1)

• To compute the mapping 𝐴𝐴𝑥𝑥 + 𝑡𝑡 we apply a matrix of the form

𝐴𝐴11 𝐴𝐴12 𝑡𝑡1
𝐴𝐴21 𝐴𝐴22 𝑡𝑡2

0 0 1

•
𝑥𝑥1
𝑥𝑥2
1

→
𝐴𝐴11 𝐴𝐴12 𝑡𝑡1
𝐴𝐴21 𝐴𝐴22 𝑡𝑡2

0 0 1

𝑥𝑥1
𝑥𝑥2
1

= 𝐴𝐴𝑥𝑥 + 𝑡𝑡
1

Computer Graphics 2020/21 - 2D Graphics 23

Homogenous coordinates
• If the last row of 𝐴𝐴 is 0,0,1 the mapping is affine

→ later we see how we can also use this row to express more
general transformation

• Structure of a general affine transformation in homogeneous
coordinates

Computer Graphics 2020/21 - 2D Graphics 24

linear
part

translation
0

𝑒𝑒1,𝑥𝑥
𝑒𝑒1,𝑦𝑦

,
𝑒𝑒2,𝑥𝑥
𝑒𝑒2,𝑦𝑦

𝑡𝑡𝑥𝑥
𝑡𝑡𝑦𝑦

basis vectors after transf.

0 1 0 10

Homogenous coordinates
• Transformation Rules & Matrix Operations

Multiplication ≡ composition

𝑥𝑥→
𝑇𝑇
𝑇𝑇𝑥𝑥 = 𝑦𝑦→

𝑆𝑆
𝑆𝑆𝑦𝑦 = 𝑧𝑧 ≡ 𝑥𝑥

𝑆𝑆𝑇𝑇
𝑆𝑆𝑇𝑇𝑥𝑥 = 𝑧𝑧

Inverse matrix ≡ Inverse transformation

• Note order of multiplication: 𝑆𝑆𝑇𝑇 means: first 𝑇𝑇, then 𝑆𝑆

Computer Graphics 2020/21 - 2D Graphics 25

Affine Transformations
• Special cases

• Translations

• Rotations

• Scalings

Computer Graphics 2020/21 - 2D Graphics 26

Affine Transformations
• Special cases

• Shearings

• Reflections

Computer Graphics 2020/21 - 2D Graphics 27

Affine Transformations
• Classes of Affine Transformations

• Rigid
• Similarity
• Linear

Computer Graphics 2020/21 - 2D Graphics 28

Affine Transformations
• Rigid Transformation (Euclidean Transform)

• Preserves distances
• Preserves angles

Computer Graphics 2020/21 - 2D Graphics 29

Translation
Rotation

Rigid / Euclidean

Identity

Affine Transformations
• Rigid transformation:
𝑒𝑒1 and 𝑒𝑒2 are orthonormal and have unit length

• 𝑥𝑥 → 𝐴𝐴𝑥𝑥 + 𝑡𝑡 with 𝐴𝐴 orthogonal and det(𝐴𝐴) > 0
• Application of multiple rigid transformations is a rigid

transformation again (also true for following classes)

• If det(𝐴𝐴) < 0, 𝐴𝐴 contains a reflection, which is not rigid

Computer Graphics 2020/21 - 2D Graphics 30

Affine Transformations
• Similarity Transforms

• Preserves angles, but changes distances
• Rigid + (isotropic) scaling + reflection

𝑥𝑥 → 𝑐𝑐𝐴𝐴𝑥𝑥 + 𝑡𝑡 with 𝑐𝑐 ∈ ℝ and 𝐴𝐴 orthonormal

Computer Graphics 2020/21 - 2D Graphics 31

Translation
Rotation

Rigid / Euclidean

Similarity

Isotropic ScalingIdentity

Affine Transformations
• General Linear Transformations = affine without translation
• Origin (0,0) is always mapped to origin

Computer Graphics 2020/21 - 2D Graphics 32

Translation
Rotation

Rigid / Euclidean
Linear

Similarities

Isotropic Scaling
Identity

Scaling

Shear

Reflection

Scaling
• Examples

Computer Graphics 2020/21 - 2D Graphics 33

0.5 0 0
0 0.5 0
0 0 1

0.5 0 0
0 1.5 0
0 0 1

Shearing
• Shearing

• Pushing things sideways (compare deck of cards)

• Horizontal (y-coordinate will not change)

𝑠𝑠𝑠𝑒𝑒𝑠𝑠𝑟𝑟𝑥𝑥 𝑠𝑠 =
1 𝑠𝑠 0
0 1 0
0 0 1

• Vertical (x-coordinate will not change)

𝑠𝑠𝑠𝑒𝑒𝑠𝑠𝑟𝑟𝑦𝑦 𝑠𝑠 =
1 0 0
𝑠𝑠 1 0
0 0 1

Computer Graphics 2020/21 - 2D Graphics 34

𝑒𝑒2 = 𝑠𝑠
1

𝑒𝑒1 = 1
0

𝑂𝑂

𝑒𝑒2 = 0
1

𝑒𝑒1 = 1
𝑠𝑠

𝑂𝑂

Shearing
• Examples

• Horizontal shear: vertical lines → 45°to the right

• Vertical shear: horizontal lines → 45°to the top

Computer Graphics 2020/21 - 2D Graphics 35

1 0.5 0
0 1 0
0 0 1

1 0 0
0.5 1 0
0 0 1

Simple Rotation in 2D
• Rotation

• Vector 𝒂𝒂 = (𝑠𝑠𝑥𝑥,𝑠𝑠𝑦𝑦), angle 𝛼𝛼 with 𝑥𝑥-axis

• Length 𝑟𝑟 = 𝑠𝑠𝑥𝑥2 + 𝑠𝑠𝑦𝑦2

• By definition: 𝑠𝑠𝑥𝑥 = 𝑟𝑟 cos𝛼𝛼,
𝑠𝑠𝑦𝑦 = 𝑟𝑟 sin𝛼𝛼

• Rotation by an angle φ counter-clockwise:
𝑏𝑏𝑥𝑥 = 𝑟𝑟 cos 𝛼𝛼 + 𝜙𝜙 = 𝑟𝑟 cos𝛼𝛼 cos𝜙𝜙 – 𝑟𝑟 sin𝛼𝛼 sin𝜙𝜙
𝑏𝑏𝑦𝑦 = 𝑟𝑟 sin(𝛼𝛼 + 𝜙𝜙) = 𝑟𝑟 sin𝛼𝛼 cos𝜙𝜙 + 𝑟𝑟 cos𝛼𝛼 sin𝜙𝜙

Computer Graphics 2020/21 - 2D Graphics 36

x

y

ab

α
φ

Simple Rotation in 2D
• After substitution

• 𝑏𝑏𝑥𝑥 = 𝑠𝑠𝑥𝑥 cos𝜙𝜙 − 𝑠𝑠𝑦𝑦 sin𝜙𝜙
• 𝑏𝑏𝑦𝑦 = 𝑠𝑠y cos𝜙𝜙 + 𝑠𝑠𝑥𝑥 sin 𝜙𝜙

• Matrix form taking 𝑠𝑠 to 𝑏𝑏

𝑟𝑟𝑟𝑟𝑡𝑡𝑠𝑠𝑡𝑡𝑒𝑒 𝜙𝜙 =
cos𝜙𝜙 − sin𝜙𝜙 0
sin𝜙𝜙 cos𝜙𝜙 0

0 0 1

Computer Graphics 2020/21 - 2D Graphics 37

𝑒𝑒1 = cos𝜙𝜙
sin𝜙𝜙

𝑒𝑒2 = −𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙
𝑐𝑐𝑟𝑟𝑠𝑠𝜙𝜙

𝑂𝑂

Simple Rotation in 2D
• Rotation by 45°counter-clockwise

• Rotation by 30° clockwise

Computer Graphics 2020/21 - 2D Graphics 38

2
2

−
2

2
0

2
2

2
2

0
0 0 1

3
2

1
2 0

−
1
2

3
2 0

0 0 1

Reflection
• Reflection

• Reflect a vector across either of the coordinate axes
• Determinant of a reflection is negative
• About 𝑥𝑥-axis (multiply 𝑦𝑦 by -1):

Computer Graphics 2020/21 - 2D Graphics 39

1 0 0
0 −1 0
0 0 1

Reflection
• Across y-axis (multiply x coordinates by -1)

Computer Graphics 2020/21 - 2D Graphics 40

−1 0 0
0 1 0
0 0 1

Linear Transformations
• Compositing of 2D transformations

• First 𝑣𝑣2 = 𝑆𝑆𝑣𝑣1 then 𝑣𝑣3 = 𝑅𝑅𝑣𝑣2
• Equivalently 𝑣𝑣3 = 𝑅𝑅 𝑆𝑆𝑣𝑣1 = 𝑅𝑅𝑆𝑆 𝑣𝑣1

Computer Graphics 2020/21 - 2D Graphics 41

1 0 0
0 0.5 0
0 0 1

2
2 −

2
2 0

2
2

2
2 0

0 0 1

2
2 −

2
4 0

2
2

2
4 0

0 0 1

Linear Transformations
• Matrix multiplications are associative:

𝑅𝑅𝑆𝑆 𝑇𝑇 = 𝑅𝑅 𝑆𝑆𝑇𝑇 → 𝑣𝑣3 = 𝑅𝑅𝑆𝑆 𝑣𝑣1 = 𝑀𝑀𝑣𝑣1 with 𝑀𝑀 = 𝑅𝑅𝑆𝑆

• Matrix multiplications are not commutative
• The order of transformations does matter !!!
• Note the difference

• Scaling then rotating
• Rotating then scaling

Computer Graphics 2020/21 - 2D Graphics 42

Linear Transformations
• Note that the order of transformations is important

Computer Graphics 2020/21 - 2D Graphics 43

Scale Rotate

Rotate Scale

Linear Transformations
• Decomposition of transformations

• Write some transformation 𝑀𝑀 as the product of certain classes of matrices

• In 2D: Decomposition of any linear 2D transform into product:
rotation → scale → rotation = 𝑅𝑅2𝑆𝑆𝑅𝑅1

• From existence of singular value decomposition (SVD)
(Singulärwertzerlegung, Ausgleichsprobleme)

• Note that the scale can have negative entries

Computer Graphics 2020/21 - 2D Graphics 44

Linear Transformations
• Example: shearing

• 𝜎𝜎𝑖𝑖 singular values, 𝑅𝑅1 and 𝑅𝑅2 rotations
1 1
0 1 = 𝑅𝑅2

𝜎𝜎1 0
0 𝜎𝜎2

𝑅𝑅1

= 0.851 −0.526
0.526 0.851

1.618 0
0 0.618

0.526 0.851
−0.851 0.526

Computer Graphics 2020/21 - 2D Graphics 45

R1 SR1 R2SR1

Linear Transformations
• Matrix decomposition: represent rotations with shears

cos𝜙𝜙 −sin𝜙𝜙
sin𝜙𝜙 cos𝜙𝜙 = 1

cos𝜙𝜙 − 1
sin𝜙𝜙

0 1

1 0
sin𝜙𝜙 1

1
cos𝜙𝜙 − 1

sin𝜙𝜙
0 1

• Useful for raster rotation
• Very efficient raster operation for images: only column-wise and row-wise

operations!
• Introduces some jaggies but no holes

Computer Graphics 2020/21 - 2D Graphics 46

Linear Transformations

• 𝑟𝑟𝑟𝑟𝑡𝑡𝑠𝑠𝑡𝑡𝑒𝑒 𝜋𝜋
4

= 𝑆𝑆3𝑆𝑆2𝑆𝑆1 = 1 1 − 2
0 1

1 0
2
2

1
1 1 − 2
0 1

Computer Graphics 2020/21 - 2D Graphics 47

S1 S2S1 S3S2S1

Linear Transformations
• Images – simple raster rotation

• Take raster position (𝑠𝑠, 𝑗𝑗) and apply horizontal shear

1 𝑠𝑠
0 1

𝑠𝑠
𝑗𝑗 = 𝑠𝑠 + 𝑠𝑠𝑗𝑗

𝑗𝑗

• Round 𝑠𝑠𝑗𝑗 to nearest integer: in every row a constant shift
• Move each row sideways by a different amount
• Resulting image has no gaps

Computer Graphics 2020/21 - 2D Graphics 48

Example
• Affine Transformations with the HTML Canvas

Computer Graphics 2020/21 - 2D Graphics 49

Vorführender
Präsentationsnotizen
LiveSlide
https://lehre.lgdv.tf.fau.de/CG/Demos/HTMLCanvas.html?sel=trans-2

HTML5 SVG (Scalable Vector Graphics)
• Scene Graph based Graphics APIs
• contains primitives as children, including their attributes

(note the slightly different attribute names)

• for more information see:
https://developer.mozilla.org/de/docs/Web/SVG

Computer Graphics 2020/21 - 2D Graphics 50

Vorführender
Präsentationsnotizen
LiveSlide
https://lehre.lgdv.tf.fau.de/CG/Demos/SVG.html?sel=prim

https://developer.mozilla.org/de/docs/Web/SVG

HTML5 SVG (Scalable Vector Graphics)
• primitives can be grouped using a group node with tag “g”

• nodes form a tree
• attributes from inner nodes are valid for entire subtree

Computer Graphics 2020/21 - 2D Graphics 51

Vorführender
Präsentationsnotizen
LiveSlide
https://lehre.lgdv.tf.fau.de/CG/Demos/SVG.html?sel=group

HTML5 SVG (Scalable Vector Graphics)
• nodes can be transformed using an attribute “transform”

Computer Graphics 2020/21 - 2D Graphics 52

Vorführender
Präsentationsnotizen
LiveSlide
https://lehre.lgdv.tf.fau.de/CG/Demos/SVG.html?sel=trans

HTML5 SVG (Scalable Vector Graphics)
• In the previous example the leaf nodes are identical
• reuse one instance multiple times → use elements

Computer Graphics 2020/21 - 2D Graphics 53

Vorführender
Präsentationsnotizen
LiveSlide
https://lehre.lgdv.tf.fau.de/CG/Demos/SVG.html?sel=graph

Scene Graph
• reusing nodes turns the scene tree into a scene graph
• more precisely, a directed acyclic graph = DAG
• such a graph can be traversed just like a tree

Computer Graphics 2020/21 - 2D Graphics 54

svg

group
fill=“red”

group
fill=“green”

group
fill=“blue”

circle

rect

circle

rect

circle

rect

scene tree

svg

group
fill=“red”

group
fill=“green”

group
fill=“blue”

group
#shape

circle

rect

scene graph

Scene Graph
• universal data structure to describe scenes

→ hierarchical modeling
• to render such a scene graph, we have to

• traverse graph depth first
• remember current attributes
• accumulate transformations
• rasterize leaf nodes with these attributes and transformations

• We will come back to scene graphs later on

Computer Graphics 2020/21 - 2D Graphics 55

Next lectures …
• Rasterization of lines and Polygons

Computer Graphics 2020/21 - 2D Graphics 56

	Lecture #02��2D Graphics�
	Rendering
	Rendering
	Rendering
	Rendering APIs
	Today: 2D Graphics APIs
	HTML
	HTML5 Canvas
	2D Graphics - Basics
	Primitives
	Rectangles
	Attributes
	Paths
	Primitives - Paths
	Primitives - Paths
	Primitives – Filled Paths
	2D Transformations
	Affine Transformations
	Affine Transformations
	Affine Transformations
	Affine Transformations
	Affine Transformations
	Homogenous coordinates
	Homogenous coordinates
	Homogenous coordinates
	Affine Transformations
	Affine Transformations
	Affine Transformations
	Affine Transformations
	Affine Transformations
	Affine Transformations
	Affine Transformations
	Scaling
	Shearing
	Shearing
	Simple Rotation in 2D
	Simple Rotation in 2D
	Simple Rotation in 2D
	Reflection
	Reflection
	Linear Transformations
	Linear Transformations
	Linear Transformations
	Linear Transformations
	Linear Transformations
	Linear Transformations
	Linear Transformations
	Linear Transformations
	Example
	HTML5 SVG (Scalable Vector Graphics)
	HTML5 SVG (Scalable Vector Graphics)
	HTML5 SVG (Scalable Vector Graphics)
	HTML5 SVG (Scalable Vector Graphics)
	Scene Graph
	Scene Graph
	Next lectures …

